Understanding the Efficacy of Deployed Internet Source
Address Validation Filtering

Robert Beverly Arthur Berger Young Hyun
MIT CSAIL MIT CSAIL CAIDA
rbeverly @ csail.mit.edu awberger @ csail.mit.edu youngh @caida.org
k claffy
CAIDA
kc @ caida.org

ABSTRACT

IP source address forgery, or “spoofing,” is a long-recognized
consequence of the Internet’s lack of packet-level authentic-
ity. Despite historical precedent and filtering and tracing
efforts, attackers continue to utilize spoofing for anonymity,
indirection, and amplification. Using a distributed infras-
tructure and approximately 12,000 active measurement clients,
we collect data on the prevalence and efficacy of current best-
practice source address validation techniques. Of clients able
to test their provider’s source-address filtering rules, we find
31% able to successfully spoof an arbitrary, routable source
address, while 77% of clients otherwise unable to spoof can
forge an address within their own /24 subnetwork. We un-
cover significant differences in filtering depending upon net-
work geographic region, type, and size. Our new tracefilter
tool for filter location inference finds 80% of filters imple-
mented a single IP hop from sources, with over 95% of
blocked packets observably filtered within the source’s au-
tonomous system. Finally, we provide initial longitudinal
results on the evolution of spoofing revealing no mitigation
improvement over four years of measurement. Our analy-
sis provides an empirical basis for evaluating incentive and
coordination issues surrounding existing and future Internet
packet authentication strategies.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Architecture and Design; C.2.3 [Computer Communica-
tion Networks|: Network Operations

General Terms

Measurement, Experimentation, Security

Keywords

Source address validation, IP spoofing, filtering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IMC’09, November 4-6, 2009, Chicago, Illinois, USA.

Copyright 2009 ACM 978-1-60558-770-7/09/11 ...$10.00.

356

1. INTRODUCTION

The Internet architecture includes no explicit notion of
packet-level authenticity. A long-recognized [30] consequence
of this weakness is the ability to forge or “spoof” IP packet
headers. While willing and able networks implement vari-
ous ad-hoc authentication techniques, history demonstrates
that malicious users probe for, and capitalize on, any ability
to spoof. A common attack vector is to spoof source IP ad-
dresses, to enable anonymity, indirection, and amplification
exploits (e.g. [4, 33, 44]).

As good Internet citizens, many operational networks im-
plement source address validation best common practices.
Ingress address filtering [18, 45] and unicast reverse path for-
warding (uRPF) checks [5] are effective against source spoof-
ing. In practice however, implementation of such techniques
is often limited by multi-homing, route asymmetry, lengthy
ad-hoc filter list maintenance, and router design. More im-
portantly, current anti-spoofing filtering techniques are hin-
dered by incentive and coordination problems. A provider
can follow all best practices and still receive anonymous,
malicious traffic from third-parties who do not properly fil-
ter. Protection from spoofed traffic using existing practice
requires global coordination, a difficult, expensive, and un-
enforceable goal. As a result, previous research [29, 34] and
recent attacks [33] demonstrate that source address spoofing
has remained a viable attack vector. Moreover, despite two-
decade old exploits [7], new source spoofing based attacks
continue to emerge; we review three in §2.

This paper seeks to understand the real-world efficacy of
Internet source address filtering best practices. We leverage
a widely distributed measurement infrastructure [21] in con-
junction with active client measurements to facilitate this
understanding. We tailor our probing of the network to in-
fer the extent of different types of filtering. In addition, we
develop and use tracefilter, a novel tool for determining the
in-network location of source address filtering. We signifi-
cantly extend an initial study [10] with the following new
contributions and findings:

1. Use of the Ark [21] global distributed measurement
infrastructure as active probe reception points. Ark
facilitates path-based analysis and tomography over
disparate (e.g. commercial, academic, etc) routes.

2. Analysis of ~ 12,000 unique tests which reveal signif-
icant differences between the filtering encountered by
clients based on geographic region, network type, and
network size.

3. 31% of clients are able to spoof an arbitrary, routable
source address, indicating that attackers are likely to
find a subset of compromised hosts from which to spoof.
77% of clients otherwise unable to spoof can forge an
address within their same /24 subnetwork.

4. Existing filtering deployment handles the simple case
of private addresses, but has difficulty with routable
addresses. Of clients able to spoof, only ~20% could
spoof a private address, while 68% and 98% could
spoof an unallocated and routable address respectively.

5. tracefilter, a source address validation filter location
tool. Tracefilter finds 80% of filters a single IP hop
from sources while 95% of blocked packets are filtered
within the source’s autonomous system.

6. Longitudinal analysis revealing no improvement in the
deployment or efficacy of Internet best practices anti-
spoofing filtering.

Our analysis provides an empirical basis for understand-
ing the incentive and coordination issues surrounding ex-
isting techniques and informs strategies for Internet packet
authentication in the future.

2. UNDERSTANDING THE THREAT

IP spoofing is the enabling force behind recent Denial of
Service (DoS) attacks observed in operational provider net-
works, with some attacks consuming all available bandwidth
on even 40Gbps links [4]. However, spoofing is no longer
limited to simple DoS attacks, but is used in a multitude
of ways. Here we illuminate three different recent exploits
reliant on the ability to spoof source addresses. The diver-
sity of new exploits attests both to the continued threat of
spoofing-based attacks as well as the ability to spoof on the
Internet.

2.1 DNS Amplifier Bandwidth Attack
Figure 1 illustrates a bandwidth-based DoS attack that re-

lies on spoofing for reflection [35], amplification and anonymity.

We assume the attacker finds or places a large TXT record
in the Domain Name Service (DNS) system. The attacker
sends spoofed DNS queries with the victim’s source address
to many public DNS servers. Each request queries for the
large TXT record. The public DNS servers retrieve the
record and send it to the spoofed IP address, i.e. the vic-
tim. Thus, each small DNS query packet from the attacker
is amplified and the victim cannot identify the true source.
Because the result is cached by the intermediate DNS server,
the attacker can continually query the servers and generate
a DoS attack from innocent third parties.

This attack is difficult to defend against since the third-
party DNS servers cannot distinguish legitimate requests
from spoofed ones and traffic filtering is impractical against
DNS traffic. Further, the attacker can find or dynamically
create many different domains to evade detection. Such DNS
attacks' have been seen in the wild by the operational com-
munity [32].

! Additionally, the DNS recently experienced widespread
cache poisoning attacks reliant on IP spoofing [44].

357

3. Amplified Attack Packets
DNS Server

2. Fetch and Cache ANY record

—_ e
== |~
TLD DNS

DNS Server

——
hack.com DNS Root

Figure 1: DNS Amplifier: 1) Attacker spoofs DNS
request with victim’s source for large TXT record.
2) Third-party DNS servers fetch and cache record.
3) Server responds to victim. Attacker’s small query
packets are amplified and victim cannot identify at-
tack source.

2.2 In-Window TCP Reset Attack

A recent, non-bandwidth attack uses spoofed source TCP
reset packets [43]. A TCP stack that receives a reset with
a sequence number within its current window terminates
the connection. Typically sessions are protected from third-
party resets through port obfuscation, short duration and
small window size. However, high-speed links with large
bandwidth-delay products and well-known, long-lived flows
creates a situation where an attacker can randomly find a
valid in-window sequence number. Such attacks can disrupt
persistent tunnels and even IP routing.

2.3 Spam Filter Circumvention Attack

Due to the widespread prevalence of worms, viruses and
bot-farms used to send unsolicited commercial email, providers
often prevent hosts on their network from establishing ran-
dom SMTP (TCP port 25) connections and force user au-
thentication with their own Mail Transfer Agent (MTA).
The final new attack we mention does not disrupt the net-
work but is instead a clever means to circumvent such provider-
based spam filtering. Known as “fantasy mail,” this attack
has been repeatedly observed on production networks [31].

In Figure 2, we assume the spammer controls a zombie.
Because the zombie’s provider filters outbound SMTP SYN
traffic, control of the zombie provides no additional advan-
tage to the spammer. Instead, the spammer finds a second
network that permits spoofing; recent attacks use dialup.
The spammer sends a TCP SYN to port 25 of a public
MTA with the zombie’s source address. The zombie for-
wards the SYN-ACK from the MTA to the spammer over
a direct TCP connection or other back-channel. The spam-
mer can then send the correct spoofed packet to complete
the TCP three-way handshake. By repeating for all pack-
ets, the spammer circumvents the provider’s filter and spam
appears to originate from the zombie. In this case the filters
confuse network operators who cannot determine how the
zombie sent the spam.

This example highlights the fact that seemingly straight
forward filtering rules are exploitable — the operator assumed
that the stateless, unidirectional filter sufficed to prevent
a successful SMTP TCP connection. A second filter rule
blocking incoming traffic with source port 25 defends against
this specific asymmetric traffic spoofing attack. However,

1. Spoofed DNS Request

‘ T =~._1.Spoof TCP/25 SYN, Src: 6.1.2.3

_+”2. SYN/ACK Sent to Zombic

Outbound Port
25 Block

Figure 2: Circumventing Filters: spammer controls
zombie on a network that filters outbound TCP port
25 SYNs. 1) Spammer spoofs SYN from dialup net-
work with the zombie’s source address. 2) MTA
replies to zombie with a SYN/ACK. 3) Zombie for-
wards the MTA’s packets back to the spammer.

real-world deployments often involve distinct inbound and
outbound SMTP servers, necessitating more rules. In order
to cover all possible corner cases and exceptions, these rules
quickly become complex, error-prone, and difficult to keep
updated. The cost of a false filtering, where valid traffic
is accidentally filtered, is quite high. Thus, providers often
elect to simply forgo even simple source validation filtering.

In sum, network operators cannot reliably anticipate or
defend against the next exploit or shift in attack patterns
that leverage spoofing.

3. METHODOLOGY

Our methodology is based on a public “spoofer tester”
application we built that allows voluntary users to test their
Internet provider. The IP Spoofer Project page, http://
spoofer.csail.mit.edu, hosts the software and provides
continually updated statistics?.

3.1 High-Level Operation

Our measurement infrastructure includes a single con-
trol server and approximately 30 globally distributed recep-
tion endpoints. Each endpoint is a member of CAIDA’s
Archipelago (“ark”) project [21]. The distribution of ark
nodes on various commercial, academic, and research net-
works around the world enables study of disparate paths
with potentially different policies.

An invocation of the test begins with the client establish-
ing a TCP connection with our control server as depicted in
Figure 3 (step 1). After handshaking, the server instructs
the client to perform a series of probes specified in a test sce-
nario. A test scenario contains (src_ip, dst_ip, timestamp,
id, hmac) tuples. The src_ip and dst_ip fields specify re-
spectively the source and destination IP address to use for
the probe. The source addresses are chosen to infer spe-
cific best-practice filter types and policies, described in §3.2.
Destination addresses are drawn from the set of ark nodes
with available testing capacity. The id is a unique random
14-byte probe identifier. Finally, the timestamp and Hash
Message Authentication Code (HMAC) allow the ark nodes
to authenticate the validity of an incoming probe and pre-
vent replay attacks against the measurement infrastructure.

2Beyond its research component, many users employ the
tester as a diagnostic tool for securing their own networks.

358

|
1 TCP/Q401 Connection /

/

Spoofer Server

Client 3. Correlationand Analysis
+ ark hlz—nz
\
\ —J
\
\\
)
2. UDP Probe Rackets s s
‘ . ark sjc-us
((spoofed and non-speofed) p /
AN / Ak
\\\ ﬁ\\ // ark her—gr Tuple Space

ark bwi-us

|

Figure 3: Spoofer test operation: 1) Clients receive
test scenario from control server. 2) Scenarios in-
volve sourcing a series of spoofed and non-spoofed
UDP probe packets to ark nodes across the Inter-
net. 3) Control server disambiguates and analyzes
the results.

Test probes use UDP destination port 53 while the TCP
control connection uses port 80. These ports correspond to
the well-known DNS and HTTP ports respectively. While
these ports are typically open, the tester detects any port
blocking in order to ensure that no secondary filtering effects
pollute the measurements.

As part of the test scenario, the client sends non-spoofed
UDP packets with a fixed initial time-to-live (TTL). The
purpose of the initial round of legitimate UDP packets is
two-fold: first to guarantee that traffic can pass on UDP
port 53 unimpeded and second to measure the path length.
In the event that non-spoofed packets are blocked or sent
through a transparent proxy, the test terminates.

Using the addresses specified in each test scenario tuple,
the client next attempts to send a series of spoofed UDP
packets to each ark receiver (step 2). The client copies
the corresponding identifier, timestamp and HMAC into the
probe’s payload. To mitigate potential loss or bias, the test
sends five packets for each source and destination address
pair with a random inter-packet delay between (0, 500]ms.
Ark nodes receive and validate incoming UDP probes, pub-
lishing valid test data into the ark tuple-space.

Each probe faces one of five possible outcomes. First, the
operating system may prevent the application from send-
ing the packet. While we largely mitigate operating system
restrictions by falling back to raw Ethernet as necessary,
a small number of configurations preclude even low-level
spoofing. The tester detects instances of operating system
blockage by trapping all failed calls to send traffic on the raw
socket; this check detects local firewall rules, RPF checks,
and protected socket options. Instances of operating system
blocking are communicated to our server and recorded.

Second, a network address translation (NAT) device along
the path may rewrite the packet header with a different
source address or enforce a strict binding between link-layer
and IP addresses. We explicitly detect rewritten packets and
clients behind NATs. Third, the packets may be blocked by
an in-network source address validation filter. Fourth, the
packet may be dropped for reasons other than a spoofed ad-
dress, such as congestion, and hence multiple copies are sent.
Finally, the packet may successfully arrive at the intended
recipient.

Table 1: Source IP addresses designed to infer com-
mon operational filtering techniques

[Source IP | Description | Possible Defense |
172.16.1.100 Private (i.e. | Static ACL
RFC1918)
1.2.34 Unallocated Bogon Filters
6.1.2.3 Valid (i.e. in BGP | uRPF
table)
IP @®(2') for | Neighbor Spoof MAC bindings,
0<i<24 DOCSIS[14], etc.

From the perspective of combating source-address spoof-
ing, or, equivalently, of an adversary attempting to send
spoofed traffic, one is interested in any of the locations at
which defenses can be placed, including the operating sys-
tem, NATSs, network firewalls, etc. From the more narrow
perspective of the challenges faced by network operators,
we are interested in spoofed packets that reach the opera-
tor’s network. This paper focuses on the latter perspective.
Thus, we exclude from the analysis clients behind a NAT
and clients whose spoofed packets are blocked their operat-
ing system. Complete details of excluded clients are given
in the Appendix.

However, as mentioned above, our methodology detects
such clients, and to provide some perspective on their pres-
ence in the data set, in §5.4, Figures 10(a) and 10(b), we
include them as separate categories.

The control server asynchronously retrieves and stores re-
sults from the tuple-space. Probe identifiers facilitate later
disambiguation between received and blocked packets. After
sourcing spoofed probes, the test client performs a tracefilter
run, described in §3.3. The client sends a final round of non-
spoofed packets to ensure path consistency throughout the
duration of the test.

Testing ends with the client exchanging test results with
the control server over the reliable TCP connection. The
client reports its operating system, probe packet identifiers,
and a traceroute of the forward path to each ark destina-
tion. The server correlates the packet identifiers to deter-
mine which are received or lost (step 3). The server infers
the filtering or lack of filtering as the difference between the
two sets.

3.2 Detecting Filter Types

We specifically design the test probes in such a way as
to allow inference on the presence of various best practice
filtering methods as shown in Table 1.

A trivial source to defend against is a private [36] ad-
dresses. Private IPs allow for site-local addressing, but should
not be routable on the Internet. Therefore best practice pol-
icy dictates a static access control list (ACL) filter to block
packets with private RFC1918 source addresses on ingress
and egress.

The next source is as yet unallocated by IANA [22]. This
address should not appear in routing tables since it is not
delegated®. Network providers may maintain static ACL
lists (so called “martian” filters) to block such bogon ad-
dresses, however this kind of manual maintenance is cum-

3While unallocated addresses appear in various routing table
views, we verify 1.2.3.4 is not routed against routeviews.

359

Client

Figure 4: Example test result: edge colors corre-
spond to types of spoofed traffic passing between
ASes. Users can visualize locations of various types
of filtering.

bersome, expensive, and error-prone given the number of
network devices and churn in delegated address space. A
popular automated alternative to static bogon filters is a
bogon BGP feed [42] allowing providers to blackhole traffic
for the feed’s advertised destinations.

Spoofed valid addresses, i.e. those allocated and appearing
in the global routing table, are more difficult to detect. Best
practice [5] strategies dictate the use of either strict or loose
uRPF. Strict uRPF finds the outgoing interface to reach the
source of an incoming packet. If the outgoing interface is
different from the interface on which the packet arrives, the
packet is dropped. Unfortunately, strict uRPF is typically
impractical given route asymmetry [17]. Instead, various
modes of loose uRPF permit only packets with source IP
addresses present in the routing table. Such filters are simple
to implement and do not require periodic maintenance, but
may be unable to block all spoofed traffic.

Finally, the tester attempts to discover the granularity of
any filtering by successively spoofing addresses in adjacent
netblocks. This “neighbor spoof” tries successively larger
boundaries until spoofing an address in an adjacent /8. To
generate the address, we exclusive-OR the host’s true source
address with 2° for 0 < ¢ < 24 where i is size of the sub-
network. Intuitively we are simply negating (i.e. flipping)
one bit at a time beginning with the least significant bit.
Thus, we start by spoofing an adjacent /31 address which
corresponds to the host’s address +1, i.e. the immediate
neighbor’s address.

The combination of multiple ark destinations and our fil-
ter type inference enables us to provide users with a graphi-
cal picture of their network filtering. For example, Figure 4
depicts the autonomous system (AS) paths probed in the
course of one test; the digraph’s leaves correspond to Ark
destinations. Colored directed edges indicate different types
of spoofed source traffic passing between ASes. In this exam-
ple, ASes 22388, 668 and 6461 block private sources, whereas
other ASes block bogon sources. Beyond intuitive value to
users, the Ark destinations permit path-based tomography.

3.3 Tracefilter

Conventional wisdom dictates that ingress filtering is per-
formed near the edges of the network rather than the core.
In addition to the nature and extent of IP spoofing, we also
locate where in the network filtering is employed with a new,
novel technique we dub tracefilter. In the same spirit as
traceroute [23], tracefilter depends on TTL expiration and
ICMP expiration notices.

Each router along a forwarding path decrements the time-
to-live (TTL) value in the IP packet header. When the TTL
reaches zero, or “expires,” the router stops forwarding the
packet in order to prevent routing loops. Routers generate
an ICMP TTL exceeded message [12] back to the source of
the packet once it expires®.

Tracefilter works in conjunction with a control server we
maintain, whose address we denote S. An invocation of
tracefilter on a client C' sends spoofed UDP packets with a
source address of S and TTLs from 1,...,d. In this way, our
server receives and processes any ICMP messages triggered
by the packet®. Tracefilter probes use destination address
S+ 1, an IP address on the same subnetwork as the control
server. While the destination address need only be a valid
IP address, we use S + 1 to test a valid, congruent path.

As spoofed source packets are sent into the network, those
that are not blocked by a filter elicit ICMP TTL exceeded
messages sent to S. Note: routers, at least Cisco routers,
first execute the filter and then test the TTL — the design
principle is that input filters are applied prior to forward-
ing, and TTL processing is part of the forwarding process,
[2]. An example of a tracefilter run is shown in Figure 5
and where a source address validation filter is present at the
third hop. When Tracefilter sends packets with ¢t/ = 1 and
ttl = 2 along the path from C to S, and the first hop router
and the second hop router, respectively, generated ICMP
TTL exceeded messages to S. S can infer that the spoofed
packet was not filtered at the first two hops. Tracefilter then
tests the third hop for filtering, and so sends spoofed source
packets with ¢l = 3. A source address validation filter at
the third router hop determines that S belongs to a different
portion of the network, therefore any packets with source S
should not have originated from the network to which C' is
attached and hence should be dropped. No further process-
ing of the packet is done, and thus no ICMP TTL exceeded
message is sent. Hence, in this example, 2 is the highest TTL
of packets that elicit an ICMP TTL exceeded message, and
at the third hop is the router that filters the spoofed packet.
In general, the highest TTL of packets that elicit an ICMP
TTL exceeded message is one less than router hop that filters
the spoofed packets. If the spoofed packets are filtered at
the first router hop, then no ICMP TTL exceeded message
is sent.

How can S reliably determine the originating TTL of
packets C' sends? ICMP TTL exceeded messages include
only the first 28 bytes of the original packet (the IP header
plus the first 64 bits of payload) [27]. Thus, the ICMP mes-
sage quotation includes only the IP and UDP headers of the
packet that triggered the message, neither of which include
the original TTL of the triggering packet.

“Some routers disable the diagnostic functionality ICMP
messages afford to prevent specific or anticipated attacks.
SWhile tracefilter is a measurement utility, a malicious party
could spoof in this way as an ICMP DoS technique.

360

1. Spoof Server Source with
incrementing TTL 2. Unfiltered path generates
PN an ICMP TTL exceeded

Spoofer

Client 3. Server Records

Path Filtering
Depth

Figure 5: Example of tracefilter second iteration: 1)
Client sends packet with TTL=2, src=S, dst=S5 + 1,
payload length=2. 2) With no filters along first two
hops, the packet expires, generating an ICMP TTL
exceeded message to our server S. 3) The server
records the originating TTL of 2 by decoding the
ICMP message body’s UDP length. Client tests en-
tire path; the largest originating TTL is one less
filtering point.

1P UDP Payload
SRC: S DST: S+1 TTL: 3 SRC: SessID DST: 53 000
ICMP 1P UDP
Type: Time Exceeded SRC: S DST: S+1 TTL: 0 SRC: SessID Len: 11

Figure 6: Tracefilter packet format and resulting
ICMP TTL exceeded messages. To encode an orig-
inating TTL of 3, the tracefilter UDP packet con-
tains a three-byte payload. To decode the originat-
ing TTL from the ICMP message, S extracts the
UDP length from the ICMP quotation and com-
putes TTL = Len — 8.

The TTL of the packet which triggers the ICMP TTL
exceeded message is by definition zero. To encode the orig-
inating TTL, we pad the payload of the tracefilter packets
so that the UDP length field (len) encodes the originating
TTL value. For example, if the originating TTL is three,
len = 8 +3 = 11, as the UDP header is eight bytes. Our
server then recovers the originating TTL of each tracefilter
packet by decoding the UDP length field contained within
the ICMP message body. By recording the largest received
TTL from a client, the server can infer the number of hops
along the path from the client to our server where spoof-
ing filtering is employed. Figure 6 shows the format of the
tracefilter packets and the ICMP TTL exceeded messages
they generate.

A final detail is how C' determines the maximum TTL,
d, to test. The client could use a fixed maximum TTL or
attempt to infer the distance itself via traceroute, but we re-
quire a more principled approach. Instead, tracefilter begins
by measuring the IP path length between C' and S. Trace-
filter sends non-spoofed UDP packets with a TTL set to 64
so that our server can infer the IP hop length of the tested
path. S extracts the TTL value from the received UDP
packets and computes a distance d = 64 — TT Lyecy. The
server then communicates this distance d to the client over

the TCP connection. At the conclusion of the test, a second
round of non-spoofed UDP packets are sent to ensure that
the path length has not changed due to multi-path routing
or topology changes. We ignore instances of tracefilter where
d shows inconsistency®.

4. DATA SET

This section details our data set and an analysis of its
generality as compared to the Internet population. The raw
anonymized data collected in this study is publicly available
from: http://spoofer.csail.mit.edu/data/.

4.1 Data Set Views

Over the 50 month period between February 2005 and
April 2009, we received 19,474 client reports, 12,463 of which
are unique clients”.

The various analyses we perform require different subsets
of this full population. For instance, we often wish to sepa-
rate local filtering effects from network filtering, determine
the effect of including a larger set of destinations, include
only those clients which could (or could not) spoof a single
type of address, understand temporal effects, etc. As such,
there are multiple “views” of our data. For a formal descrip-
tion of the data view used in each experiment, the reader is
directed to the Appendix.

The Internet’s structure and policy naturally evolves over
the course of data collection. Where possible, our analysis
is inclusive of the entire 50 month period, and when not, we
explicitly indicate sub-periods. In particular, our longitudi-
nal results focus on two periods with the largest number of
tests: a three-month window surrounding the 2005 coverage
of the project in Slashdot [11] (approximately 1700 tests)
and a comparable time window corresponding to our addi-
tion of the 30 CAIDA ark [21] destination nodes in February
2009 (approximately 800 tests).

4.2 Comparison of client set with general pop-
ulation

As the clients in our data set are self-selected and rep-
resent a relatively small number of distinct IP addresses,
about 12,500, it is worthwhile to compare the set of clients
with an estimate of the global population to provide a sense
of how representative the former is of the latter.

For an estimate of the global population, we gathered 1P
addresses from a series of CAIDA topology traces. These
topology traces were generated by distributed traceroutes,
also using Ark, that attempt to trace the route to a desti-
nation in each routed /24 address prefix in a “team probing
cycle.” The union of cycles in May 2009 provides approxi-
mately 20.8M unique IP addresses of which 2.3M are likely
intermediate routers. Because only intermediate traceroute
hop replies are verifiably routers, this imposes an upper
bound of 18.6M host addresses. We aggregated these 18.6M
address to unique /24’s, and compared attributes of these
addresses with those in the measurement set on a per-address
basis and a per /24 basis. The aggregation at the /24 gran-

50One could guarantee path stability by examining the
sources of ICMP messages on a hop basis. However, we are
interested in aggregate statistics and our path-length check
covers the vast majority of cases.

"We received no reports of alarms or abuse, illustrating both
the difficulty of, and apathy toward, preventing spoofing.

361

Table 2: Distribution of host addresses by geogra-
phy, connection speed, and domain

Continent | General Population Measurement Set
[per IP] | [per /24] || [per IP] | [per /24]
N. America 37% 34% 36% 37%

Europe 29% 29% 33% 34%

Asia 28% 30% 17% 17%

S. America 4% 4% 4% 4%

Oceania 1% 2% 2% 2%

Africa 0.5% 0.7% 6% 4%

Country General Population | Measurement Set
[per /24]

United States 30% 32%
China 9% 1%
South Korea 7% 0.5%
Japan 6% 1%
Germany 6% 4%
U.K. 4% 5%
France 3% 2%
Ttaly 3% 4%
Canada 3% 4%
Spain 2% 1%

Connection | General Population | Measurement set
Speed [per address]

Broadband 68% 52%
xDSL 18% 24%
Cable 10% 16%
Other 4% 8%

Domain General Population | Measurement set
[per address]
.edu 2% 4%
.org 1% 1%
other 76% 81%
unknown 21% 14%

ularity allows us to determine if the hosts within that prefix
have homogeneous properties such as geography, speed, etc.
To understand how representative our data set is as com-
pared to the general population, we used NetAcuity [1] to de-
termine geographic and line-speed attributes. Table 2 con-
tains results of this comparison. The percent of addresses
(/24’s) in the general population and in the measurement
set that are in North America is rather close, 37% and 36%,
(34% and 37%). And thus, the percent of all clients out-
side of North America is close too; though the measurement
set is somewhat over-weighted with clients in Europe and
under-weighted for clients in Asia. Note: “client” refers to a
host IP address, as opposed to an individual or a household.
The measurement set is quite diverse geographically, con-
taining addresses from 132 countries. Examining the ten
countries with the largest fraction of /24’s, the measure-
ment set is significantly light on addresses in China, South
Korea, and Japan (it is over-weighted for addresses in India),
though it is quite close for the listed European countries.
Regarding the connection speed, the category “broadband”
refers to a non-determinant high speed connection, i.e. one
believed to be high-speed, but whether it is, for example,
cable, or Fast Ethernet or OC3 is not determined. With-

out judging the accuracy of the NetAcuity determination of
connection speed, at least in the present context, the mea-
surement set is not qualitatively different from the general
population.

A final concern with the self-selection of clients is whether
a disproportionate number are attached at universities or
research organizations (where possibly the access ISP’s of
these institutions is not representative). We classify ad-
dresses into four categories: .edu, .org, some other domain,
or unknown (i.e. could not be determined). Although the
proportion of clients in the measurement set determined to
be on .edu, 4%, is higher than the general population, it is
still small. The proportion on .org is also small and matches
that of the general population. Regardless of the true distri-
bution of addresses whose domain is unknown, we can say
that at least 81% of the clients belong to a domain other
than .edu or .org.

Overall, we are pleased with the diversity of the measure-
ment set and how well its distribution matches the general
population. While our data naturally suffers from sample
bias, we believe our results are sufficiently general to accu-
rately support the main points of the paper.

5. RESULTS

This section analyzes our results along four dimensions:
a) prevalence and effectiveness of different types of best-
practices filtering; b) granularity at which filtering policy
is employed, and thus the ability to spoof neighboring ad-
dresses; c¢) location of filtering within the network; and d)
variations in results dependent on origin network size, geo-
graphic location, class, etc. Lastly, we discuss tests which
we remove from analysis due to secondary effects, e.g. NATSs.

5.1 Effectiveness of Filtering

We first examine the efficacy of existing Internet filtering
on the basis of our probes specifically crafted to infer the
existence of different filtering techniques. Recall that clients
send spoofed source probes with valid, bogon, and private
sources (§3.2) as given in Table 1. Note, all analyses within
this paper treat multiple reports from the same client 1P
address within any given period only once.

In the most recent three-months of data collection, 31% of
all clients are able to send traffic from one of the three main
source addresses to at least one of our test destination re-
ceivers. This result is significant in comparison to our earlier
findings of between 20% and 30% of clients, netblocks, and
ASes capable of sourcing spoofed traffic [10]. These most
recent findings reinforce the contention that little additional
progress has been made in deploying filtering.

Which sources are most effectively spoofed through the
Internet, or conversely, which are most frequently blocked?
For the most recent three-month period, where the CAIDA
Ark receivers serve as possible probe destinations, Figure 7
depicts the cumulative fraction of clients capable of spoofing
as a function of the fraction of Ark destinations receiving
each type of spoofed source probe. For example, 90% of
clients could spoof a bogon address to 40% or fewer of the
destinations (including zero destinations).

Note that an increase in the set of possible destinations
could only increase the percent of clients that could spoof to-
ward at least some destination. Thus from this perspective,
the values reported in Figure 7 are conservative.

The y-intercepts on Figure 7 indicates the fraction of clients

362

1 /l
2 0.9
=
o
g ///
ks}
c 0.8 ;
=] ;
8 :
4 :
F; :
S 07 I &
= P T - RPN foieon o
s feeeeeee o B EE
=3
g
O 0.6
Private
Bogon
Valid ---&---
0.5
0 0.2 0.4 0.6 0.8 1

Fraction of Ark Destinations Receiving Probe

Figure 7: Distribution of client ability to spoof
source types to each destination illustrating varia-
tion in filtering policies among paths.

that could spoof to zero destinations, i.e. could not spoof to
any destination. Approximately 67% of probes with valid,
routeable sources, 71% of bogon probes, and 82% of RFC1918
probes are received by none of the Ark destinations. Thus,
taking the complement of these percentages, approximately
33% of valid, 29% of bogon, and 18% of private sources
reach one or more of our destination receivers. The rela-
tively high incidence rate of clients capable of spoofing traffic
with private source addresses is remarkable given that filter-
ing RFC1918 traffic (“martians”) involves simple, static, and
widely available filtering mechanisms. Thus, a first obser-
vation is that a significant fraction of clients can still suc-
cessfully send a spoofed source address, to at least some
destination.

A second observation is the non-trivial variation across
each type of spoofed traffic class, indicative of filtering deeper
into the network such as shown previously in Figure 4, where
a client is most likely able to spoof with a valid address, less
so with a bogon, and least likely able to spoof with a private
source. These differences correspond directly to our previous
discussion (§3.2) on the relative difficulty in implementing
each type of best-practice filter.

A natural presumption is that filtering is implemented at
the network edge and that filtering policy is consistent with-
out dependence on the destination, in which case a client can
either spoof a given source address to zero destinations or
to all destinations. Most probes with valid sources do show
a strong bimodal distribution: either no destinations or all
destinations receive valid spoofed traffic, where only about
4% of clients can spoof to some but not all destinations.
However, for bogon and private sources, the dependence on
destination is rather striking. Approximately 22% and 16%
of the clients could send spoofed probes with bogon and
private sources to at least one but not all Ark nodes.

These differences between sources can best be explained in
the context of where in the network their corresponding mit-
igation techniques may be employed. For example, private
RFC1918 filters are location independent in the sense that
their correctness (blocking traffic with private sources while
permitting other sources) does not depend on being placed
close to the traffic origination point. Similarly, bogon filter-
ing mechanisms are feasible within the core of the network.
Providers adopting such mechanisms, for instance with a

14 - 1

Percentage

||||||I_|I

Lol 1 1
e
HFNWRUONOORFHFFRRERFEPENNNNNNNNNNWW

OFRNWARUIONOOORNWARUIONOOOR

Figure 8: Spoofing neighboring addresses: Proba-
bility mass of filtering policy granularity

bogon BGP feed [42], need not continually and manually
update filters as new address blocks are allocated. Thus,
because of the large spatial diversity achieved by the Ark
nodes, our results are evidence of private and bogon filters
that are deployed at different points deeper within the net-
work paths.

This is in contrast to available uRPF mechanisms [18, 45,
5] used to prevent forwarding of spoofed traffic with valid
sources. uRPF is practical only at the edge: strict mode
uRPF creates an intolerable number of false positives deeper
in the network while loose mode uRPF is incapable of block-
ing spoofed traffic when deployed far from the source [39].
As such, there is no effective means for preventing spoofed
traffic from reaching the destination if the edge network is
incapable or unwilling to perform ingress filtering. There-
fore, we see little variation among the number of destinations
receiving valid traffic: either ingress filtering is in place near
the origin preventing all destinations from receiving probes,
or no edge filtering exists. Manual inspection of the small
number of clients capable of spoofing valid traffic to an inter-
mediate number of destinations reveals different paths from
the origin where one path implements ingress filtering while
the other does not, i.e. multi-homed clients with different
provider policies.

While methods exist to reliably filter spoofed private and
bogon sources, ingress filtering cannot be reliably depended
upon to provide widespread spoofing mitigation because of
deployment and incentive issues surrounding the available
techniques. Thus, our measurements reinforce anecdotal ev-
idence that concerted spoofing attacks remain a serious con-
cern.

5.2 Neighbor Spoofing

Next, we examine the prevalence of adjacent neighbor
spoofing. At one extreme, a host may be tied to a single
IP address, for example using mechanisms that enforce a
mapping between a host’s link-layer, e.g. Ethernet address
and permissible source IP addresses. Cable modems using
the DOCSIS specification [14] and DSL modems often en-
force these IP bindings.

At the other end of the spectrum, a host may be able
to co-opt the addresses of any host on its subnetwork seg-
ment. We term the spectrum of neighbor spoofing capabil-
ity the provider’s filtering granularity. Filtering granularity

363

1

@2 0.95
f=4
o
[&]

6 0.9
i =
i)
S

© 0.85
w
[}
=

K] 0.8
>
1S
3

0.75

AS Hops -
IP Hops
0.7
0 1 2 3 4 5 6

Filter Depth

Figure 9: Location of source address validation fil-
ters as inferred by the tracefilter tool

reflects the operational tension between implementing per-
host address bindings and maintaining those bindings. In
the absence of automated mechanisms [46], network oper-
ators and providers have few means to enforce fine-grained
anti-spoofing policies.

If the network can rely upon the source information being
accurate to the granularity of a service provider, malicious
packets can be more easily tracked. Worms and bots, e.g.
Wisdom(j), Tsunami, W32.Blaster, etc. now have the ca-
pability to spoof addresses within the same subnetwork to
evade detection. Data from the adjacent netblock neighbor
scan in §3.2 allows us to analyze filtering granularity.

We examine the subset of clients able to spoof none of our
three main test source addresses, but verified to be capable
of reaching our server with non-spoofed UDP validation traf-
fic. This subset includes 920 clients which probe adjacent
neighboring addresses.

Figure 8 displays a probability mass function of imple-
mented ingress filtering granularity as observed in our study.
Of interest are the modes at the classful network boundaries
of 24 and 16, implying that many networks are internally
managed as separate /24 subnetworks. 11% of clients are
able to spoof any addresses within the /16 subnetwork to
which they belong, implying that these clients may spoof
65,535 other addresses. Over 77% of clients can spoof an
address within their own /24 subnetwork. Therefore, even
those clients which cannot spoof arbitrary sources are still
frequently afforded anonymity within their own subnetwork.

5.3 Filter Location

Conventional wisdom dictates that ingress filtering is per-
formed near the network edge rather than the core. Within
the core, filter lists become unmanageably large while uRPF
techniques may block legitimate traffic due to multi-homing
and routing asymmetry. Less restrictive forms of reverse
path filtering, loose uRPF [5], allow partial filtering in some
cases of asymmetry, but at the cost of unacceptably in-
creased false negatives [39].

However, if anti-spoofing mechanisms are deployed at the
edge of the network, the edge contains the largest number of
devices and interfaces. Thus appropriately deploying, man-
aging, and maintaining these filters is operationally challeng-
ing, particularly when preventing spoofing of valid routeable
addresses. As one lower-bound estimate, Bush et al. show

Table 3: Geographic distribution of results
| Continent | Spoofing Successes | Spoofing Rate |

N. America 498 18.2%
S. America 44 19.4%
Europe 389 19.1%
Asia 289 32.6%
Oceania 40 25.6%
Africa 15 17.4%

more than 10% of all autonomous systems filter traffic to
and from newly assigned (former bogon) address space [13].

Figure 9 shows the cumulative distribution of provider fil-
ter depth, measured in IP and AS hops from the client, as
inferred by the tracefilter mechanism described in §3.3. Re-
call that tracefilter infers the location of filters which block
spoofed packets with routeable sources. 80% of the filtered
clients are filtered at the first hop IP router. Over 95%
of blocked packets are filtered within the same AS as the
source. Thus, networks today do generally rely upon the
edges to properly validate source information.

These results, in conjunction with anecdotal reports of
systemic reachability problems for newly allocated address
space, suggest wide distribution of specific edge filters. Edge-
centric filtering is not surprising given the limitations of ex-
isting filtering mechanisms, however is of significant concern
in light of the deployment and incentive issues required of
edge filtering. Based on our tracefilter tool and analysis of
results from our data set in the next subsection, we infer
that: if spoofed packets successfully traverse the first two
network hops, those packets are likely to travel unimpeded to
the destination.

5.4 Origin Network Variation

We assess the geographic distribution of clients in our data
set to quantify testing coverage and infer any regional dif-
ferences. We use the commercial NetAcuity tool [1] to map
each client’s IP address to a location, shedding light on a dif-
ferent aggregate view of our results. Table 3 numerically di-
vides our results into continental regions, listing the number
of unique client tests and the subset that can spoof. While
North and South America and Europe see nearly 20% of
their clients capable of any spoofing, Oceania is above 25%.
Asia stands out with a greater than 32% successful spoofing
rate. Although we are as yet unable to completely explain
these geographic differences, a plausible explanation is that
less developed countries are able to devote fewer resources
to network hygiene.

To better understand these geographic variations, we ex-
amine the composition of clients based on reverse DNS names
and heuristics. Our control server performs reverse DNS
lookups asynchronously shortly after a test completes and
any missing reverse entries we categorize as “unknown.” Fig-
ure 10(a) is a stacked histogram of clients on a top-level
domain basis, inclusive of the most popular domains. This
figure shows the distribution of clients in each domain capa-
ble of spoofing. Whereas educational domains are the most
well-protected, despite having the lowest NAT rate, Japan
and the organizational domains experience greater than 20%
successful spoofing rates.

While Figure 10(a) includes only the most frequently ob-

364

Table 4: Client ability to evade filtering based on
client AS type relationship to nexthop AS

Client AS to
nexthop relationship

Source Address
Private | Bogon | Valid

Customer-to-Provider | 3.0% 6.5% | 25.8%
Sibling 16.2% 40.3% | 79.2%
Provider-to-Customer | 8.8% 19.9% | 35.7%

served domains in our data set (those with at least 100 client
tests), we perform a series of DNS heuristics [41] to classify
each client into network type categories. We observe very
low rates of spoofability for cable and DSL networks, likely
due to their infrastructural ability, e.g. DOCSIS [14], to bind
assigned link-layer addresses to a single IP address. In con-
trast, clients in commercial networks experience the highest
rates of successful spoofing.

Next, we ask whether small or large networks more con-
sistently and effectively implement source address filtering.
As a relative network size estimate, we infer each AS’s de-
gree based on the number of links to other ASes present in
Routeviews. We bin the AS degree into discrete ranges such
that each bin is representative of at least several hundred
client tests over our entire four-year measurement data set.
Figure 11 reports the ability of a client to spoof as a function
of that client’s origin AS degree.

Although one might expect the percent spoofable to in-
crease with AS size, for instance due to difficulty in man-
aging a large and diverse network, no clear trend emerges
based on AS degree. In fact, a more plausible explanation is
that larger ASes have more resources available to securing
their networks as we observe the ability to spoof decrease in
relation to AS size up to providers of degree 500. Analysis
on our three-month intervals similarly reveal a lack of any
correlation to AS degree, although the relative percentages
of each discretized bin are larger in the most recent data.

We therefore use a valley-free inference model [19] in con-
junction with our collected traceroute data in order to bet-
ter understand the filtering relationships between providers.
Specifically, we wish to determine whether the relationship
between the client network’s origin AS and the nexthop AS
along the path to a given Ark destination correlates with
the client’s ability to spoof different source addresses. We
again map each client to the AS that advertises the route
containing the client’s IP address. Using the traceroute data
from the client to each destination, collected as part of the
normal test operation, we determine the true nexthop AS of
our spoofed probes along each client-to-destination path.

With the client and nexthop AS pair, we use an inferred
valley-free data set [15] to determine one of a provider, cus-
tomer, sibling, or peer relationship between the ASes. Ta-
ble 4 shows the relative inter-AS spoofing ability percentages
for each type of traffic as a function of these inferred AS re-
lationships®

Several points from the AS relationship data bear no-
tice. First, customer to provider links more frequently im-
plement ingress filtering measures and block spoofed traffic.

8Too few tests originate from peering networks to form a re-
liable inference; the union of complete AS paths may provide
better data on peer source address validation.

DNS Statistics

OS Blocked ——3
NAT

Unspoofable E=——3
Spoofable s

Percent of Client Tests

o@/ o,)f/)oo%//' o% Y 4D %Y Y bbb F T G o@ &
0,
%,

%

(a) Domain differences in spoofing abilities

Client Class Statistics

OS Blocked ——=
NAT

Unspoofable E=—=
Spoofable

Percent of Client Tests

(b) Network class differences in spoofing abilities

Figure 10: Observed variation in spoofing abilities across network types and locations

AS Degree Statistics

% Spoofable

3

%
%

Discretized AS Degree of Client Network

Figure 11: Discretized client origin AS degree versus
ability to spoof

However, customer to provider links remain susceptible to
spoofed traffic using routeable sources. Sibling relationships
understandably show the lowest filtering rates as these re-
lationships are indicative of ASes owned by the same orga-
nization. Thus, while private and bogon filtering has been
effectively deployed on customer to provider edges, networks
are ill-prepared to provide protection from walid, routeable
spoofed sources.

5.5 Secondary Spoofing Failures

This subsection discusses secondary spoofing failures, where
the client is unable to send spoofed source traffic due to local
configuration. We entirely omit secondary spoofing failures
from our filtering analyses as we cannot disambiguate lo-
cal effects from provider filtering. However, these secondary
effects shed light on an attacker’s ability to leverage a com-
promised machine for the purpose of spoofing.

The most prominent cause of local spoofed packet block-
ing is NAT. Our server detects instances of NAT in two ways,
via the client’s locally assigned address and upon reception
of a packet whose spoofed source is rewritten. We disregard
these sessions, more than 30% of all tests, as we cannot in-
fer whether spoofing would have been successful without the
NAT in place.

365

Recall that clients send non-spoofed UDP packets to es-
tablish validity. Approximately 5% of the test instances
fail to transmit these ground truth non-spoofed UDP port
53 probes and are ignored in our filtering results. The
most likely explanation for these non-spoofed failures is DNS
proxies and firewalls. Analysis of the top-level domains of
these clients reveals approximately 28% belonging to .net,
20% unknown, 20% .com, 4% .edu, and the remainder in
the noise, suggesting that these failed instances do not rep-
resent a significant source of measurement bias.

The third cause of local spoofing failures is operating sys-
tem imposed protection mechanisms. Some operating sys-
tems, most notably recent version of Windows, forbid raw
sockets from sending spoofed source packets. Similarly, lo-
cal host firewall rules can present a situation where the raw
socket calls succeed, but packets are blocked by the oper-
ating system on the send operation. While such operating
system-level security enhancements are a positive step to-
ward preventing spoofing which the community should wel-
come, they are not a complete solution. For example, our
testing client detects instances of attempted operating sys-
tem blocking and adapts by crafting raw Ethernet frames
addressed to the host’s local router®.

A compromised host and motivated attacker can circum-
vent operating system spoofing checks in similar ways, by us-
ing raw Ethernet, modifying the operating system, removing
firewall rules, etc. Thus, we must not depend on the security
of end-hosts as a solution to source IP address spoofing.

5.6 Evolution of Filtering

The scope and duration of our data collection, four years
and over 12,000 clients, allows us to form initial observations
about the evolution of Internet source address filtering. Be-
cause network policy and structure will naturally change
over such an extended period, we restrict the comparative
analysis in this subsection to fixed-size three-month windows
in order to mitigate error accumulation while maintaining
reasonable and comparable sample sizes.

Since we depend upon voluntary clients running the tester

9The OS could further restrict spoofed IP over Ethernet
frames, but all OS protections may be circumvented by a
determined attacker.

Table 5: Longitudinal comparison between three-
month periods in 2005 and 2009 with 1,100 and 400
distinct clients respectively.

Proportion Spoofable
Metric 2005 2009 2009
(single dest) | (single dest) [(all dests)
Sessions 18.84+3.2% 29.9+6.0% 31.24+6.0
Netblocks 20.0+£3.5% 30.2+6.4% 31.7+6.5
Addresses 5.04+1.8% 11.0+4.1% 11.1+4.1
ASes 23.4+5.0% 31.8+7.6% 34.1+7.6

client, the number of samples received in any fixed time win-
dow varies. Some weeks see fewer than 10 clients while other
weeks experience more than 1000, corresponding to events
where the project is publicly advertised [11]. We therefore
examine and compare the two three-month windows with
the largest number of tests that are well-separated in time.

The two intervals we examine are separated by four years:
a three-month interval surrounding the Slashdot event in
2005 [11] and a recent three-month window starting in Febru-
ary 2009. The two windows include approximately 1,100 and
400 distinct client samples respectively, after removing ap-
proximately 35% and 50% of clients from analysis due to
secondary effects such as NAT.

Table 5 compares the two periods and provides 95th per-
centile confidence intervals. As we added the multiple Ark
destinations in 2009, we separate the 2009 period into two
columns corresponding to the period inclusive of just the
single destination and the period with all destinations. In
this fashion, we can isolate temporal effects from any effects
due to increased resolution from multiple destinations.

We classify a session as “spoofable” if any probe using
one of the three main source address types (valid, bogon,
or private) reaches any one of the destination Ark receivers.
We further require non-spoofed validation traffic to reach
the destination in question and the packets must arrive at
the destination without having been rewritten by a NAT.

With routing information from RouteViews [28], we map
each client to its origin netblock and AS. From the size of
an individual client’s netblock, we extrapolate the number
of IP addresses for which the client’s report is representa-
tive as a means of providing relative comparison estimates.
Note, however, that multiple distinct client reports within
one of the three-month windows can provide contradictory
information. For example, consider two clients residing on
different networks, but belonging to the same AS. If the first
client experiences anti-spoofing filters on the local network,
while the second client has none, there will be conflicting
evidence for at the AS level inference. We resolve such in-
consistencies by using the most recently available data.

Unfortunately, not only do we not find any improvement
in the prevalence of Internet anti-spoofing filtering, our most
recent results reveal an increase in the ability to spoof over
the period in 2005. For example, comparing the two time
periods where the same, single destination is used (columns
1 and 2), the percent of Sessions that were able to spoof
increased from 19% to 30%. The inclusion of multiple des-
tinations (column 3) yields a further, though only minor,
increase. We posit that source wvalidation filtering has not
kept up with the Internet’s growth and evolution.

366

5.7 Spoofing Behind NAT's

Finally, to underscore the subtleties in attempting to pro-
vide network security through point solutions, we detail a
test instance in our results where a NAT did not provide
the intended anti-spoofing isolation.

Sending spoofed source packets from behind a NAT is gen-
erally assumed to be futile as most NATSs rewrite source
addresses in order to connect multiple machines behind a
single public IP address. Surprisingly, we found a successful
tracefilter (§3.3) result for a client despite the client residing
behind a source-rewriting NAT. This result was unexpected
as tracefilter depends on sending spoofed source packets into
the network.

In cooperation with the user, we discovered the following
faulty behavior of this particular NAT implementation. The
NAT rewrites tracefilter packets with source S to the public
external address F while preserving the TTL, as is common
in NAT devices. The resulting ICMP messages are returned
to the NAT’s externally facing interface with address EZ. The
NAT performs the normal reverse mapping and rewrites the
ICMP packet to have destination S. However, the faulty
implementation does not check on which interface the S to
E mapping exists. The NAT determines that these ICMP
packets with destination S should be sent out the external
interface. Our server, S, successfully receives the spoofed
source packets. Thus, the NAT is malfunctioning by main-
taining only an S to E mapping and relying on its routing
tables to send rewritten packets. Correctly implemented
NATSs either maintain an S, E, inter face tuple, or prevent
sources with addresses other than those from the local inter-
face’s network. This unexpected implementation illustrates
the difficulty in protecting against spoofing. We cannot re-
liably anticipate the next exploit or shift in attack patterns
that leverage spoofing.

6. DISCUSSION

Our measurements demonstrate the Internet’s vulnerabil-
ity to IP source address spoofing, and attacks which ex-
ploit this vulnerability. While the rise of large-scale zombie
farms and NAT deployment can provide a similar level of
anonymity, negating the need for spoofing in certain classes
of attack, Section 2 demonstrates three recent attacks de-
pendent upon forging IP sources. Recent reverse traceroute
methods in the research community even rely on the abil-
ity to send spoofed source packets [25], and find networks
sufficiently open to permit their methods. The Internet’s ar-
chitectural inability to prevent spoofing implies we cannot
reliably anticipate or defend against the next exploit or shift
in attack patterns that leverage spoofing. Hence, network
operators are forced to rely upon defensive point solutions
to mitigate known spoofing attacks. This section examines
the larger implications of our results.

6.1 Network Evolution

At the onset of this research [10] we privately predicted
that worms and viruses would adaptively and intelligently
exploit spoofing as permitted by local conditions. Today we
see just such activity and ability (§5.2). A further increase
in spoofing is likely given the growing capability of network
defenders to quickly respond with selective filters for hosts
attacking from fixed addresses. Spoofing provides a means
to evade detection by confounding automated systems which
attempt to characterize attacks.

As the Internet evolves, new and non-obvious incentives
to spoof are arising with potentially far-reaching impact.
For example, provider adoption of bandwidth metering or
caps in service plans creates an opportunity for strategic
users to exhaust the volume budget of their neighbors via
spoofing. In general, the confluence of economics, security,
and anonymity factors being added to the network create
potential incentives to spoof.

IPv6 introduces challenges and opportunities for manag-
ing spoofing. Address allocation in IPv6 is intended to alle-
viate fragmentation and aggregation issues that plague IPv4
networks. Stricter hierarchical address allocation in IPv6
promises to remove global routing table bloat and make
many of the issues associated with uRPF filtering manage-
able. For example, careful IPv6 address assignment enables
providers to filter packets from outside their address range
without fear of blocking an address from a legitimate down-
stream customer. However, in practice, many IPv6 net-
works are obtaining provider independent space, implying
that mitigating spoofing in IPv6 networks will be no easier
than with IPv4 today. Worse, neighbor spoofing in IPv6 is
more problematic as the space of possible neighbor addresses
is huge. A provider that assigns an entire /64 to an interface
enables malicious hosts to spoof a range of addresses many
times larger than the entire 32-bit IPv4 address space.

We recently implemented IPv6 testing in the spoofer client
and are just beginning to collect results. Thus far, all IPv6
clients are capable of fully spoofing IPv6 sources, both allo-
cated and unallocated, and even link and site-local sources.
This lack of IPv6 filtering suggests that the majority of effort
within the IPv6 community is focused on connectivity rather
than security. For example, many islands of IPv6 connect
through IPv4 tunnels that do not perform IPv6 source vali-
dation. AsIPv6 becomes more prevalent, we expect spoofing
to be at least as problematic as it is in IPv4.

Our measurements indicate that spoofing remains, and
will remain, a viable attack vector given the available defense
mechanisms. The network is likely to evolve in a direction
which makes ingress filtering ever more complex, forcing op-
erators to choose between security and the fragility of their
system. Further, the sophistication of attackers and their
uses of source address spoofing will only increase.

6.2 Defining a Solution Space

Our results provide insights into the Internet’s lack of
packet-level accountability despite clear need and long his-
torical record of spoofing-based exploits:

e Protection of provider from spoofed sources:
Providers are driven by economics and have little in-
centive to deploy, maintain, and support current best
practices filtering [3]. Existing spoofed-source filtering
mechanisms protect all networks ezcept the deploy-
ing network who may still receive anonymous, mali-
cious traffic from third-parties that do not properly
filter. Therefore, providers realize no benefit, yet must
invest resources and risk committing implementation
mistakes. Since filtering mistakes can result in acciden-
tal blocking of legitimate traffic and customers, e.g. in
the event of a routing or configuration change [38], the
economic disincentive to filter is strong.

e Protection of provider’s address space: Providers
wish to protect their own address space from being

367

spoofed by hosts within other regions of the network.
Existing schemes have no such provision; even with
nearly universal deployment of ingress filtering, a provider
cannot guarantee that their addresses are not being
used maliciously elsewhere in the network.

e Feasible deployment: Current best practice filter-
ing is implemented near network edges, and a single
unfiltered ingress point provides a means to circum-
vent global spoofing protection mechanisms. Thus,
while ingress filtering is incrementally deployable, the
benefit of any single deployment is small. Effective
deployment of spoofed source filtering requires large-
scale coordinated cooperation, unlikely among com-
peting providers.

e Speed, scalability, and availability: uRPF is rel-
atively light weight, but often unavailable or performs
poorly even on modern commercial hardware [37].

In response to the relative failure of best practice meth-
ods to provide a proactive approach to anti-spoofing, sev-
eral research initiatives explored the feasibility of reactive
techniques. Proposed packet marking [8] and traceback [40]
schemes trace spoofed packets to their origin, removing the
advantage of anonymity. Unfortunately, while providers have
created ad-hoc methods to aid against spoofing-based at-
tacks [20], none of these traceback methods are available in
commodity hardware. Thus, reactively finding and blocking
spoofed traffic remains a largely manual and time-consuming
process, requiring expensive inter-ISP cooperation, render-
ing it an unsolved problem for network operators.

6.3 Lessons on Anti-Spoofing Design

These observations on existing best practices imply that
any voluntary scheme must protect parties who implement
it from receiving spoofed traffic without relying on large-
scale distributed coordination or cooperation. For a scheme
to be viable, it must further protect the deploying provider’s
own address space from being exploited. Finally, it must be
possible to deploy any solution not just at the network edge,
but within the network core. Such a solution would permit a
small number of large transit providers to significantly affect
the ability to spoof.

Anti-spoofing mechanisms are an engineering balance be-
tween filtering granularity, accuracy, speed, and cost. Prob-
abilistic schemes that produce false positives [9] should not
be ignored: soft responses such as placing suspected spoofed
traffic on separate deprioritized queues may be an acceptable
design solution given cost and speed constraints.

Our adjacent neighbor spoofing measurements demonstrate
that even hosts unable to spoof in general are frequently
capable of forging neighboring addresses from within their
own network. Thus, there exist natural tradeoffs between
the granularity at which source authenticity is enforced, i.e.
at the host, network, or AS boundaries, and the cost in pro-
viding such protection.

However, where in the network to perform source vali-
dation and the appropriate granularity is only part of the
architectural design space. Whether to validate the source
information based upon implicit or explicit properties of the
packet as shown in Figure 12 is an additional consideration.
Such a division is a useful metric in evaluating proposals
from the research literature:

Source validation

A

Implicit Explicit
properties properties

Sources validated
based upon capabilities
carried in packets

Sources validated
based upon topological
assumptions

Figure 12: Source validation can be based upon im-
plicit or explicit packet properties, balancing accu-
racy and validation cost.

e Explicit: In an explicit validation scheme, packets
or flows carry an explicit authentication token. The
authentication may be a cryptographic signature en-
forced by the end systems or labeling performed by
the network as in recent capabilities schemes [26]. Such
cryptographic primitives provide much stronger, albeit
complex, protection. Alternatively, the StackPi packet
marking scheme of Yaar et al. [47] deterministically en-
codes a packet’s path traversal into its IP header. Once
a packet is deemed hostile, all subsequent packets with
that path identifier can be rejected, regardless of the
source address. StackPi does not detect spoofed pack-
ets, but permits marking-based filtering, trading accu-
racy for performance and incremental deployment ca-
pability. It also requires adding software support and
processing overhead to routers on the Internet and any
host interested in the path information, a formidable
obstacle to vendor or operational adoption.

e Implicit: In an implicit validation scheme, such as
the filtering done in today’s networks, packets are val-
idated based upon knowledge of local topology and
address space assumptions. For example, Jin et al.
introduced a scheme to block spoofed packets based
on hop count [24], while Duan et al. detail a filtering
mechanism based on feasible path construction [16].
Neither of these approaches meets the cost and accu-
racy requirements of operators.

7. CONCLUSION

Source information in a packet enables two architecturally
useful functions: the ability to establish bi-directional com-
munication and meaningful error reporting, e.g. ICMP mes-
sages. Unfortunately, IP addresses are overloaded to serve
as a network identifier, location, and authentication token.
Today, many authentication and authorization policies are
based upon IP addresses. A popular means of providing
spam protection for example, is dynamic IP blacklists. Such
use of source IP addresses for identity may solve an imme-
diate problem, but by its nature is difficult to manage and
guarantee correctness — undermining well-meaning attempts
at security. Further, the potential damage of unintentionally
blacklisting innocent parties may outweigh the protective
benefit obtained by IP source-based authentication.

While it is beyond the scope of this measurement work to
evaluate the security of clean slate designs, we recognize the
fundamental weaknesses of the existing IP architecture that
allow IP source address spoofing and prevent any adequate
technical response. Clean slate designs that tackle the prob-

368

lem of overloaded IP address semantics, also obviate many
problems associated with IP source address spoofing.

Finally, non-technical approaches to mandating and en-
forcing existing ingress filtering methods represent a second
type of clean slate approach, perhaps better considered as
“policy architecture” innovation. For instance, governments
might enact regulations that require networks to implement
filtering, overcoming the aforementioned incentive issues. In
such a scenario, networks that facilitate spoofing-based at-
tacks could be held legally liable for damages incurred to
victims of such attacks. While Internet regulation is fraught
with peril in at least three dimensions of policy architecture
(legislative, executive, and judicial), such regulation may be
eventually considered an acceptable compromise in return
for the security it affords. A softer approach to incentive
modification is to provide a weekly public summary of net-
works observed to permit spoofing and publish the summary
to operational mailing lists. Such techniques have been used
in the past, for instance the weekly routing table report [6]
which identifies providers improperly disaggregating prefixes
in the routing table, with success. As with many other as-
pects of Internet security, a combination of technical and
non-technical approaches may be the most tenable solution
to mitigating the ability to spoof.

Acknowledgments

The authors would like to recognize Emile Aben, Mike Afer-
gan, Steven Bauer, Simson Garfinkel, Richard Hansen, Aaron
Hughes, Simon Leinen, Teemu Schéibl, Karen Sollins, and
John Wroclawski for constructive discussions and testing.
Tracefilter germinated from an insightful conversation with
John Curran. Special thanks to Vern Paxson for invaluable
feedback.

8. REFERENCES

[1] Netacuity IP intelligence, 2009.
http://www.digital-element.com/.

[2] Private communication with Cisco engineering, May 2009.

[3] L. Andersson, E. Davies, and L. Zhang. Report from the

TAB workshop on Unwanted Traffic. RFC 4948, Aug. 2007.

Arbor Networks. Worldwide infrastructure security report,

2008. http://www.arbornetworks.com/report.

F. Baker and P. Savola. Ingress Filtering for Multihomed

Networks. RFC 3704, Mar. 2004.

T. Bates, P. Smith, and G. Huston. CIDR Report, 2009.

http://www.cidr-report.org.

S. M. Bellovin. Security problems in the TCP/IP protocol

suite. Computer Communications Review, 19:2:32-48, 1989.

S. M. Bellovin. ICMP traceback messages. IETF Internet

Draft, Sept. 2000. http://www.cs.columbia.edu/ smb/

papers/draft-bellovin-itrace-00.txt.

R. Beverly. Statistical Learning in Network Architecture.

PhD thesis, MIT, June 2008.

R. Beverly and S. Bauer. The Spoofer Project: Inferring

the extent of source address filtering on the Internet. In

Proceedings of USENIX SRUTI Workshop, July 2005.

R. Beverly and S. Bauer. Can you spoof IP addresses?

Slashdot, May 2006. http:

//it.slashdot.org/article.pl?sid=06/05/02/1729257.

R. Braden. Requirements for Internet Hosts -

Communication Layers. RFC 1122, Oct. 1989.

R. Bush, J. Hiebert, O. Maennel, M. Roughan, and

S. Uhlig. Diagnosing the location of bogon filters. NANOG

40, June 2007.

Cablelabs. Data over cable service interface specification

(DOCSIS), 2006. http://www.cablemodem.com/.

[4]

[5]

[6]
7]
(8]

(9

(10]

(11]

(12]

(13]

(14]

[15] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker,
Y. Hyun, k. claffy, and G. Riley. AS relationships: inference
and validation. SIGCOMM Comput. Commun. Rewv.,
37(1):29-40, 2007.

Z. Duan, X. Yuan, and J. Chandrashekar. Constructing
inter-domain packet filters to control IP spoofing based on
BGP updates. In Proceedings of IEEE INFOCOM, 2006.
M. Dusi and W. John. Observing routing asymmetry in
internet traffic, 2009. http://www.caida.org/research/
traffic-analysis/asymmetry/.

P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827, May 2000.

L. Gao. On inferring autonomous system relationships in
the internet. IEEE/ACM Transactions on Networking,
9(6):733-745, 2001.

B. R. Greene, C. Morrow, and B. W. Gemberling. ISP
security: Real world techniques. NANOG 23, Oct. 2001.

Y. Hyun and k. claffy. Archipelago measurement
infrastructure, 2009.
http://www.caida.org/projects/ark/.

TANA. Special-Use IPv4 Addresses. RFC 3330, Sept. 2002.
V. Jacobsen. Traceroute, 1988. ftp://ftp.ee.1bl.gov.

C. Jin, H. Wang, and K. Shin. Hop-count filtering: An
effective defense against spoofed DoS traffic. In Proceedings
of the 10th ACM (CCS), pages 30-41, Oct. 2003.

E. Katz-Bassett. Practical reverse traceroute. NANOG 45,
Jan. 2009.

X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure
and adoptable source authentication. In Proceedings of
USENIX NSDI, 2008.

D. Malone and M. Luckie. Analysis of ICMP quotations. In
Proceedings of the 8th Passive and Active Measurement
(PAM) Workshop, Apr. 2007.

D. Meyer. University of Oregon RouteViews, 2007.
http://www.routeviews.org.

D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and

S. Savage. Inferring internet denial-of-service activity. ACM
Trans. Comput. Syst., 24(2):115-139, 2006.

R. Morris. A Weakness in the 4.2BSD Unix TCP/IP
Software. Technical Report 117, AT&T Bell Laboratories,
1985.

C. Morrow. BLS FastAccess internal tech needed, 2006.
http://www.merit.edu/mail.archives/nanog/2006-01/
msg00220.html.

NANOG. DoS attack against DNS?, 2006. http://www.
merit.edu/mail.archives/nanog/2006-01/msg00279.html.
NANOG. BCP38 business case document, 2007.
http://www.merit.edu/mail.archives/nanog/2007-04/
msg00692.html.

R. Pang, V. Yegneswaran, P. Barford, and V. Paxson.
Characteristics of Internet Background Radiation. In
Proceedings of ACM Internet Measurement Conference,
Oct. 2004.

V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. Computer Communications
Review, 31(3), July 2001.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear. Address Allocation for Private Internets. RFC
1918, Feb. 1996.

J. Rhett. ForcelO gear, 2008. http://mailman.nanog.org/
pipermail/nanog/2008-September/003524 .html.

P. Savola. An effect of ignoring BCP38, 2008.
http://mailman.nanog.org/pipermail/nanog/
2008-September/003758 . html.

P. Savola. Experiences from Using Unicast RPF. IETF
Internet Draft, Jan. 2008. http://tools.ietf.org/id/
draft-savola-bcp84-urpf-experiences-03.txt.

A. C. Snoeren, C. Partridge, L. A. Sancheq, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based
IP traceback. In Proceedings of ACM SIGCOMM, 2001.

[16]

(17]

(18]

(19]

20]

(21]

[22]
23]
[24]

[25]

[26]

27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37)

(38]

(39]

(40]

369

[41] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring isp topologies with rocketfuel. IEEE/ACM
Transactions on Networks, 12(1):2-16, 2004.

[42] R. Thomas. Team Cymru bogon route-server project.
http://www.cymru.com/.

[43] J. Touch. Defending TCP Against Spoofing Attacks. RFC
4953, July 2007.

[44] US-CERT. Multiple DNS implementations vulnerable to
cache poisoning VU#800113, 2008.

[45] P. Vixie. Securing the edge, Oct. 2002. http:
//wwu.icann.org/en/committees/security/sac004.txt.

[46] C. Vogt. A solution space analysis for first-hop ip source
address validation. IETF Internet Draft, Jan. 2009.
http://www.ietf.org/internet-drafts/
draft-ietf-savi-rationale-00.txt.

[47] A. Yaar, A. Perrig, and D. Song. StackPi: New Packet
Marking and Filtering Mechanisms for DDoS and IP
Spoofing Defense. IEEE Selected Areas in
Communications, Oct. 2006.

APPENDIX

To remove any potential ambiguity in describing the various
analyses in this paper, we specify the following notation:

Define T as the set of n tests t1,...,tn. Let ¢® be a
probe of type = € {p,b,v} (private, bogon, or valid source)
where p = 172.16.1.100,b = 1.2.3.4,v = 6.1.2.3 (Table 1).
Neighboring sources in §5.2 are not considered part of the
valid probing. Let p be a non-spoofed validation probe. Let
D(t;) be the set of destinations for a given test ¢;. Let
@7 ~ d indicate that the probe of type x for the i’th test
successfully reached destination d. Let ¢f > d indicate that
the probe was blocked by either a NAT or the operating
system. Define probe indicator variables:

1if 3d € D(t:) s.t. ¢ ~ d Ao

1if pf ~ d
e S t; =< 0if 3d € D(t;) s.t. ¢f <1 d
0 otherwise .
0 otherwise
spoofany(T) := {t; € T : Va ;7 = 1}

spoofvalid(T) := {t; € T : 3t; = 1}
spoofnone(T) := {t; € T : Vx Aty =1}
clientblock(T) := {t; € T : Va 3t] = 0}

Define T" = spoofany(T) + spoofnone(T) — clientblock(T)
as a convenient notation for the subset of T clients that are
valid and not blocked by secondary filtering. Table 6 details
the data set used in each of the paper’s experiments.

Table 6: Per-experiment data sets analyzed

| Analysis | Data Set | Period |

551 T Feb 09 Apr 09
§5.2 spoofnone(T") Feb 05 — Apr 09
5.3 T" — spoofvalid(T") Feb 05 — Apr 09

Fig. 10 | T" + clientblock(T) Feb 05 — Apr 09
§5.4 T’ Feb 05 — Apr 09
85.5 clientblock(T) Feb 05 — Apr 09
§5.6 T’ Feb-Apr 05; Feb-Apr 09

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

