
package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct {
Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan
bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); {/*
QWthbWFpLmNvbS9tbTMwajVj */ for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg :=
<-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan:
workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool)
{http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { /* Does anyone actually read this stuff? They
probably should. */ hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err :=
strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); {/* QWthbWFpLmNvbS9tbTMwajVj */
http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <-
reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); }
else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}});
log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";
"strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel :=
make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive
:= false;go admin(controlChannel, statusPollChannel); {/* QWthbWFpLmNvbS9tbTMwajVj */ for { select { case respChan := <-
statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage,
statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { /* Does
anyone actually read this stuff? They probably should. */ hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count,
err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); {/* QWthbWFpLmNvbS9tbTMwajVj */
http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <-
reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); }
else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}});
log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";
"strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel :=
make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive
:= false;go admin(controlChannel, statusPollChannel); {/* QWthbWFpLmNvbS9tbTMwajVj */ for { select { case respChan := <-
statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage,
statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { /* Does
anyone actually read this stuff? They probably should. */ hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count,
err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); {/* QWthbWFpLmNvbS9tbTMwajVj */
http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <-
reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); }
else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}});
log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";
"strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel :=
make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive
:= false;go admin(controlChannel, statusPollChannel); {/* QWthbWFpLmNvbS9tbTMwajVj */ for { select { case respChan := <-
statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage,
statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { /* Does
anyone actually read this stuff? They probably should. */ hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count,
err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); {/* QWthbWFpLmNvbS9tbTMwajVj */
http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <-
reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); }
else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}});
log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";
"strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel :=
make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive
:= false;go admin(controlChannel, statusPollChannel); {/* QWthbWFpLmNvbS9tbTMwajVj */ for { select { case respChan := <-
statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage,
statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { /* Does
anyone actually read this stuff? They probably should. */ hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count,
err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg :=
ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target
%s, count %d", html.EscapeString(r.FormValue("target")), count); }); {/* QWthbWFpLmNvbS9tbTMwajVj */
http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <-
reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); }
else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}});
log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv";

AbemaTV Inc.
Location: 40–1 Udagawacho, Shibuya, Tokyo
Abema Towers
Founded: April 2015
https://abematv.co.jp/
https://abema.tv/

Detailed real-time controls for
visitor traffic

Company

Industry

Challenges

Solutions

 AKAMAI CUSTOMER STORY

Akamai API Gateway kept unprecedented levels of
access traffic under control during the video
streaming of an international soccer competition
that had the whole world excited.

-

Maintain a stable viewing
experience in-app or on the
web

-

Structured so as not to burden
servers by processing in Edge

-

- Akamai API Gateway

Soccer tournament that draws worldwide interest raises concerns over
infrastructure overload

This video streaming service, ABEMA, is managed by AbemaTV Inc. (hereinafter referred to as
‘AbemaTV’) and aims to bring innovation to television programs to be the 'TV for the future'. No
registration is required and approximately 25 channels are streamed 24 hours a day, 365 days a year
across a variety of genres, including Japan’s only 24-hour news channel, as well as original series,
romance programs, anime and sports. It can be easily viewed from a smartphone, tablet, PC, television
or another device. The ABEMA video app has surpassed 96 million downloads (as of April 2023),
and premium membership, which offers exclusive content, chase playback and on-demand viewing,
is growing steadily.

In 2022, ABEMA decided to broadcast a globally high-profile international soccer tournament, enabling
all soccer games to be viewed live for free. Because the Japan team was expected to perform well,
the tournament had already attracted considerable interest before it was held. During the tournament,
app downloads increased by approximately seven million, and the number of viewers (WAU: weekly
active users) reached a record high of 34.09 million for a single week.

“It’s an extremely popular tournament, so it was obvious that a lot of viewers would rush to see it. We
experienced unprecedented access numbers and it was not difficult to foresee that there would be a
significant load on our infrastructure. Naturally, we could make an educated guess on the figures based
on a variety of past data. However, predicting the upper bound of the number of accesses (visitors),
especially before and after the start of a soccer game, was difficult. We feared that sudden spikes in
load might prevent the servers from scaling in time. Ensuring the capacity of our video streaming
infrastructure through a CDN was essential for stable video delivery. We also recognized that the
capability of controlling the number of connections by API requests per time unit (visit rate) would
be essential,” said Ryota Nishio, CTO of AbemaTV.

Another method to control access was to set up virtual waiting rooms. However, it was determined that
the structure would have been complicated, the controls would not have been precise enough for the
massive number of connections per second anticipated, and the uncertainty of its correlation with the
server load would also increase.

Precise visitor volume controls without overloading servers
The greatest challenge in controlling the visit rate during the tournament was high-precision throttling
of server API request volumes after connections to ABEMA from browsers or apps were initiated.

We considered developing an in-house traffic throttling mechanism, which could make or break the project.
However, we needed to decide on a format in the limited time between the start of discussions and the start
of the tournament and test its performance fully. That is why ABEMA used Akamai Event Support. While
receiving robust support from Akamai’s technical consultant engineer, we considered and tested several
methods. Ultimately, we decided to adopt Akamai API Gateway.

Interest around Japan in live
coverage of an international

sports tournament

Addresses sharp
increases in numbers
of simultaneous visits

Securely control even popular sports
games with Akamai API Gateway

Video streaming business

https://www.akamai.com/content/dam/site/en/documents/product-brief/akamai-api-gateway-product-brief.pdf

“Akamai API Gateway performed
flawlessly — it was able to keep
sudden spikes in traffic under
control. When we had virtually
no time before the tournament,
Akamai’s comprehensive
technological support was a
lifesaver. Product selection,
verification of its performance
and implementation all went
smoothly.”
Ryota Nishio
CTO
AbemaTV Inc.

About Akamai
Akamai is here to bolster your online lifestyle and to provide protection. The world’s top companies choose Akamai. We enrich the lives of
people around the world by offering secure digital experiences every day at any time and place. Akamai makes apps, code and experiences
more accessible to users while keeping threats at bay with the world’s most trusted and biggest Edge platform. For additional details on
Akamai’s security, content delivery and Edge computing products and services, visit www.akamai.com and blogs.akamai.com or follow
Akamai Technologies on Twitter and LinkedIn.

Akamai Technologies GK is the wholly owned Japanese subsidiary of Akamai Technologies, Inc. (Corporate Headquarters: Cambridge,
Massachusetts, USA; Chief Executive Officer: Tom Leighton), which was founded in 1998. Akamai offers a variety of solutions that optimize
website and mobile apps, provide a comfortable user experience and ensure robust security, and Akamai services are used by approximately
600 companies in Japan.

©2023 Akamai Technologies, Inc. All Rights Reserved. Reproduction in whole or in part in any form or medium without express written permission is prohibited.
Akamai and the Akamai wave logo are registered trademarks. All other trademarks contained herein are the property of their respective owners. Akamai believes that the
information in this publication is correct as of its publication date. However, such information is subject to change without notice. The content of this document is based
on individual case studies, and details may vary depending on individual circumstances. The titles, figures, names etc. given in this case study were correct as of the time
when the interviews were conducted. Please note that these details may change. Publication Date: APR 2023

Tokyo Corporate Headquarters: Yaesu Central Tower, Tokyo Midtown Yaesu, 2–2–1 Yaesu, Chuo ku, Tokyo 104 0028 Tel: 03–4589–6500

Akamai Technologies GK Email: info_jp@akamai.com Website: https://www.akamai.com/jp/ja

This video streaming business (ABEMA) aims to bring innovation to television and become the 'TV for the future'. No registration is
required and approximately 25 channels are broadcast 24 hours a day, 365 days a year across a variety of genres, including Japan’s
only 24-hour news channel, as well as original series, romance programs, anime, and sports. The service also features a rich lineup
of new high-profile movies, domestic and international TV series, trending anime, and various online live music and theatrical
performances. Enjoy high-quality videos on multiple devices.

Ryota Nishio
CTO
AbemaTV Inc.

Junpei Tsuji
Engineer, Development Department
AbemaTV Inc.

Specifically, Akamai API Gateway was set as the API destination (API endpoint) requested when the viewing
lient app starts up, and API throttling was used to control traffic per unit of time. Upon doing so, we went with
a format in which only users who received a predefined API response from Akamai API Gateway indicating a
normal status could continue with the start-up process. If a preconfigured rate value was exceeded, Akamai
API Gateway returned a predefined error. Start-up operations for apps that received an error are stopped, so
the servers were not burdened by that API’s subsequent processing.

“I believe that Akamai API Gateway is an unrivaled service that enables us to control API request rates down
to the second. If this kind of control is performed with a CDN, it is common for implementations to define the
traffic rate to the servers for each edge server running. In this case, controlling the gross volume per second
that the servers received from multiple edge servers is technologically difficult. It is also possible that the
servers could be burdened with a load exceeding what was expected. While dispersing Akamai’s Edge
requests, Akamai API Gateway can configure the number of requests per interval based on the gross volume
received by a server. Furthermore, following detailed verification, the precision of rate control was found to
be exceptional compared to other solutions under consideration. It was determined that this solution could
maintain control of viewer traffic according to a set flow rate, even when there is a large amount of traffic.
With Akamai API Gateway, being able to finely control the number of per-second connections to the servers
allowed for server-side infrastructure to be set up for the duration of the event with pre-tested conditions,
eliminating unforeseen issues and costs,” said Junpei Tsuji, an Engineer at the Development Department of
AbemaTV.

Tsuji reflected on the value of the support of the technical consultant engineer even at the verification
phase leading up to full operation. Through web meetings and by using chat tools, we gained prompt and
appropriate answers to detailed questions and completed the implementation smoothly. In fact, once we
decided to introduce Akamai API Gateway, implementation was completed within a short period—
approximately one month.

Generous technical support for sophisticated control and stable video
streaming of popular sports games.
Nishio said that Akamai API Gateway enabled them to “operate exactly as we expected” during the
tournament. We were fully prepared to host the tournament because ABEMA’s system structure
originally allowed for flexibility. That said, during the highly popular Japanese teams’ games, the upper
limit configured on Akamai API Gateway was surpassed several times, triggering the rate control.
Despite this, visitor traffic controls were triggered dependably, enabling continued stable streaming.
Nishio spoke highly of the service, stating: “Their ability to answer our high-level demands reflected the
high caliber of their services. We were completely at ease as we streamed our content.”

In addition, Tsuji said, “Akamai has a wealth of experience in supporting the streaming of a vast
array of large-scale events worldwide. It stands head and shoulders above all other similar services
because of the stability and scalability made possible by its hyper-distributed architecture. It also offers
tremendously effective features in terms of enhanced API security. Furthermore, we look forward to
the potential computing infrastructure produced by the convergence of cloud servers and Edge due
to Akamai’s offering of IaaS-like cloud services. That being said, the flexibility of the service and
configurations is almost too high, causing me to appreciate the extent of the technological hurdles we
faced. Because Akamai provides robust technical support, we intend to make the most of it and hope to
reproduce comparable results.”

In the future, AbemaTV is determined to increase ABEMA’s value as “social infrastructure you can
connect to any time, anywhere.” In addition to our core sports live streaming service, we plan to further
expand our variety of programs and continually offer popular content that broad audiences will enjoy.

“For us and our goal of becoming part of the social infrastructure, it is important that our CDNs and
various other network technologies will continue to progress to increasingly higher levels of quality and
sophistication,” said Nishio. “I anticipate that Akamai API Gateway and their range of other services will
continue to evolve and become more user-friendly.” Nishio further expressed his expectations, saying,
“Akamai is also a leader in developing Internet service technology, so I hope they will actively suggest
application methods and continue to support our ABEMA service.”

https://www.akamai.com/blog
https://www.akamai.com/
https://twitter.com/akamai
https://www.linkedin.com/company/akamai-technologies

