
Assessing Support for DNS-over-TCP in the
Wild

Jiarun Mao1, Michael Rabinovich1, and Kyle Schomp2

1 Case Western Reserve University, Cleveland OH 44106, USA
2 Akamai Technologies, Cambridge MA 02142, USA

{jxm959, michael.rabinovich}@case.edu
kschomp@akamai.com

Abstract. While the DNS protocol encompasses both UDP and TCP as
its underlying transport, UDP is commonly used in practice. At the same
time, increasingly large DNS responses and concerns over amplification
denial of service attacks have heightened interest in conducting DNS in-
teractions over TCP. This paper surveys the support for DNS-over-TCP
in the deployed DNS infrastructure from several angles. First, we assess
resolvers responsible for over 66.2% of the external DNS queries that
arrive at a major content delivery network (CDN). We find that 2.7% to
4.8% of the resolvers, contributing around 1.1% to 4.4% of all queries ar-
riving at the CDN from the resolvers we study, do not properly fallback
to TCP when instructed by authoritative DNS servers. Should a content
provider decide to employ TCP-fallback as the means of switching to
DNS-over-TCP, it faces the corresponding loss of its customers. Second,
we assess authoritative DNS servers (ADNS) for over 10M domains and
many CDNs and find some ADNS, serving some popular websites and
a number of CDNs, that do not support DNS-over-TCP. These ADNS
would deny service to (RFC-compliant) resolvers that choose to switch
to TCP-only interactions. Third, we study the TCP connection reuse be-
havior of DNS actors and describe a race condition in TCP connection
reuse by DNS actors that may become a significant issue should DNS-
over-TCP and other TCP-based DNS protocols, such as DNS-over-TLS,
become widely used.

1 Introduction

The DNS protocol, along with the massive infrastructure that runs it, is one
of the key components of the Internet, providing mapping services from names
to various data records, most notably from human-readable hostnames to IP
addresses [29]. Over its decades of development, numerous use cases for DNS
have emerged, such as distributing tokens used as proof of website ownership
[4], providing access to cryptographic signatures for verifying both the integrity
of the DNS records themselves [10] and the follow-up application traffic [13],
and facilitating mechanisms for enhancing email security [11, 18]. Diverse usage
scenarios have led to a wide range of DNS message sizes, including some very
large messages.
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DNS can use either UDP or TCP as transport, but UDP is overwhelmingly
used in practice: only 0.02% of DNS queries in our log of DNS queries at a
major content delivery network (CDN) arrive over TCP. Using UDP is attractive
because it is light-weight, and most DNS messages fit within a datagram and
even within the 512-byte limit stipulated for DNS-over-UDP, per RFC 883 [28].
Moreover, the optional EDNS0 payload size allows larger UDP messages [37].

However, there are still messages that may be too large even for EDNS0
payload size. Further, large UDP responses make DNS an easy vector for ampli-
fication denial of service attacks [26, 32], since an attacker can (i) elicit a large
response from a legitimate server using a comparatively small query and (ii)
spoof the source IP address of the victim, causing the server to send its (large)
response to the victim. Thus, there is an increased interest in expanding the use
of TCP for DNS interactions. Support for TCP allows much larger DNS messages
(up to 65535 bytes) and effectively limits amplification attacks as large messages
are not transferred until after the TCP handshake verifies the authenticity of
the client’s IP address; note that packets exchanged during the handshake are
all equal size, precluding amplification in packet size – if not number of packets
due to server-side retries [23] – during the handshake itself.

According to the protocol, a DNS interaction can occur over TCP at the
discretion of either the client or the server. The client can simply send its query
over TCP. The server can force a ”TCP fallback” by responding to a UDP
query with a partial UDP response and the truncated flag (TC) to indicate the
truncation. The client should then retry the query over TCP.

The heightened interest in DNS-over-TCP brings an important question: if
one party chooses to use TCP for DNS interactions, is there a risk that the other
party may not support it properly, given that the current practice is to use UDP
virtually exclusively? In fact, a past study of DNSSEC deployment provided an
indication that some resolvers may not be TCP-capable [24], adding impetus to
a more comprehensive look into this issue.

In this paper, we investigate the support for DNS-over-TCP in the deployed
DNS infrastructure from several angles. First, we assess the support for TCP-
fallback by recursive resolvers, using various measurement techniques to explore
different classes of resolvers, that in the aggregate are responsible for a large
portion of Internet DNS activity. Second, we assess DNS-over-TCP support by
authoritative DNS servers (ADNS) serving many domains – including popular
ones – and a large number of content delivery networks. Third, we study the
behavior of these DNS actors with regard to an important aspect of DNS-over-
TCP behavior, namely, reuse of TCP connections for multiple queries. Our key
findings are:

– We show that the egress resolvers follow complex patterns in interacting with
authoritative servers that force TCP-fallback, with only half of resolutions
exhibiting a “canonical” pattern of one UDP query followed by one TCP
query. Consequently, we design and validate an algorithm for characterizing
egress resolvers’ TCP-fallback capability from complex patterns.



Assessing Support for DNS-over-TCP in the Wild 3

– Among the egress resolvers we study, we find 2.7% to 4.8% to be incapable
of TCP-fallback. Moreover, by analyzing the DNS logs of the major CDN,
we show that these TCP-fallback incapable resolvers tend to be generally as
active as their TCP-fallback capable counterparts, as they account for 1.1%
to 4.4% of DNS queries received by the major CDN from the resolvers we
study. We believe content providers are unlikely to move to a technology
that leads to failure of such a fraction of DNS queries and potentially cuts
off a non-negligible amount of their consumers.

– We find that around 3% of popular websites, and 5% of domains at large,
with at least some ADNS failing to answer DNS-over-TCP queries. More-
over, a surprisingly large fraction of CDNs, 11 out of 47 CDNs we consider,
have at least one authoritative DNS server with no DNS-over-TCP support.
Again, we believe, with these results, resolver operators would be hesitant to
unilaterally switch to DNS-over-TCP and potentially block their users from
a non-negligible portion of Internet content.

– We identify an edge case in the DNS-over-TCP protocol that can cause
unnecessary query retries and uncover some DNS-over-TCP implementation
bugs in two major CDNs. We propose simple changes to the protocol that
would remove this vulnerability.

– We demonstrate that, despite the steady decrease in the number of open
resolvers, active scanning can still discover egress resolvers3 responsible for a
substantial portion of the Internet DNS activity. In all, the egress resolvers
discovered via our active scanning techniques contributed 66.2% of the DNS
queries in the major CDN’s DNS logs. Because this CDN handles a large
portion of the global Internet traffic, we believe the discovered egress re-
solvers are responsible for a generally commensurate fraction of the overall
DNS activity.

The datasets collected through active measurements and analyzed in this
study that are not related to the major CDN are publicly available at [1].

2 Terminology

DNS literature uses the terms “resolver”, “recursive resolver (RDNS)”, and “lo-
cal DNS server (LDNS)” to refer to the servers that provide DNS recursive
resolution service to end-user devices. We will use the term resolver. “Open re-
solver” refers to a resolver that accepts DNS queries from the public Internet,
as opposed to being restricted to specific clients. The term “authoritative DNS
server (ADNS)” refers to servers that maintain DNS records for a section of the
DNS namespace (a “zone”) and are able to provide authoritative DNS responses
to queries for names within the zone.

Some DNS deployments exhibit complex resolution paths (Figure 1) involving
multiple resolvers as discussed in [34]. Following [34], we refer to the resolver
that receives DNS queries directly from end clients as “ingress resolver”, while

3 The resolvers that directly interact with authoritative DNS servers – see Section 2.
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Fig. 1: An example of a complex resolution path which involves ingress and egress
resolvers.

an “egress resolver” communicates directly with authoritative DNS servers. The
ingress resolver may also act as an egress resolver or may forward queries from the
end clients, potentially through several intermediaries, to an egress resolver that
obtains the response from the authoritative servers and forwards the response
back to the ingress resolver, which finally sends the response back to the client.
In the latter case, the ingress resolver is often referred to as a “forwarder”.

A DNS query includes multiple fields. Of particular relevance to this paper
are the query string, denoted “QNAME”, which is a name within the DNS
namespace and the query type, denoted “QTYPE”, which indicates what type
of resource is desired (e.g., “A” for an IPv4 address, “MX” for a mail server,
and “TXT” for arbitrary text).

DNS TCP fallback refers to a scenario in which the ADNS sets the TC flag in
its response to a UDP query, indicating a truncated response (we also use ”TC
response” for brevity), and the querying resolver repeats its query through TCP
to retrieve the full response. Modern DNS platforms often employ collaborative
resolution, where a resolver may forward the follow-up querying tasks to one of
its resolver peers [3,31,34], complicating the analysis of TCP-fallback capability.
In our characterization of resolvers’ TCP behavior, we identify TCP-fallback
capable resolvers by the initial UDP query, whether the subsequent TCP fallback
arrives from the same resolver or from a peer. Because we find negligible number
of DNS interactions to be originally conducted over TCP, we equate DNS-over-
TCP capability of resolvers with their TCP-fallback capability in this paper.

3 Related Work

Geoff Huston measured DNS TCP-fallback support among resolvers in 2013 [17].
He found that 83% of 80,505 measured resolvers are capable of TCP-fallback.
In our study 8 years later, we find much greater support, with 95.2% - 97.3% of
116,851 measured resolvers being TCP-fallback capable. A further explanation
for the difference besides time is that Huston did not consider collaborative
resolution, where the the original UDP and the followup TCP queries come
from different resolvers (see Section 4.3).

TCP fallback was also considered by Moura et al. as part of a broader study
on the implications of large DNS responses [30]. By using a passively collected
dataset at .nl TLD, this study observed many more recursive resolvers than we
could with active measurements (over 3M vs. over 100K in our study) but at
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the expense of less accurate analysis due to inability to craft special queries with
unique names4. In particular, this study could only indirectly bound the effect of
collaborative resolution, while we are able to associate queries that belong to the
same resolution, via names that are used only once, whether or not they come
from the same resolver. Moura et al. also assesses the TCP fallback failure to be
more prevalent than we observed: after correcting for the specifics of Google’s
resolution platform, they found roughly 7–10% of truncated responses to lack
a TCP query follow-up5. In contrast, we estimate that, out of all queries to a
major CDN from the resolvers we study, around 1.1–4.4% of queries are from
the resolvers incapable of TCP fallback.

In 2016, Shulman and Waidner [35] studied the support for DNS-over-TCP
in ADNS and found nearly 20% of the 170K ADNS serving the top 50K domains
in the Alexa list could not return a DNS response over TCP. In contrast, we find
423K (95%) out of 445K tested ADNS in our All Domain List (described in
Section 5) to be always TCP-capable6. Clearly, we observe substantially lower
levels of incapability. Further, Shulman and Waidner found that the majority
of failures (13% of all ADNS) occurred after the TCP handshake, while the
experimental client was waiting for the DNS response. In our study, we found
the opposite: 3.8% of the total tested ADNS failed exclusively during the TCP
handshake and only 1.2% ever failed after the TCP handshake.

Vixie and Schryver [38] propose opportunistically setting the TC flag in
DNS responses as a mitigation technique for reflection and amplification attacks,
rather than dropping queries outright. A legitimate resolver can then retry over
TCP, while the attacker gains no amplification from the responses. However, this
technique is only effective if the legitimate resolvers support DNS-over-TCP.

Several works [5, 7, 25, 40] study the impact of encrypting DNS (i.e., DNS-
over-TLS, or DoT, [15] and DNS-over-HTTPS, or DoH, [12]). In particular,
Zhu et al. [40] argue that DNS-over-TLS has acceptable performance costs, in
large part due to connection and TLS negotiation reuse. While both DOT and
DOH use TCP for transport, these are new protocols that require an explicit
adoption by the parties. In contrast, DNS-over-TCP and TCP fallback are part
of the existing DNS standard that must be supported by every party. Thus, in
principle, an ADNS should be able to switch to TCP unilaterally. Our study
examines the extent to which this holds in practice. At the same time, the race
condition we uncover (Section 6) applies to both DoT, which explicitly adopts
the connection management from DNS-over-TCP (see Section 3.4 in [15]), and
DoH as judged from our personal communication with one of the leading CDNs.
Thus, in this aspect, our study informs potential support for encrypted DNS.

4 Other available passive datasets, such as DITL [9] entail a similar limitation.
5 Indeed, 47% of 15-21% of TC responses initially found without a TCP query follow-

up were to Google resolvers, virtually all of which the authors later assessed to
be successful fallback to TCP, leaving 7–10% of TC responses still without a TCP
followup.

6 While in Section 5 we categorize TCP support by domain to demonstrate the impact
to clients using TCP as their transport medium, here we categorize by ADNS for
easy comparison to Shulman and Waidner.
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4 TCP Fallback Support by Recursive Resolvers

4.1 Methodology

To investigate DNS-over-TCP support in resolvers, we collect datasets from four
sources. Three of the datasets are actively collected; each offers a view into a
specific population of resolvers and we collect all three to provide a larger view of
resolvers on the Internet. The fourth dataset is aggregated logs from the ADNS
servers of a major CDN, which we use to assess the coverage of our study and
evaluate the activity level of the resolvers collected in the active datasets.

A limitation of our study is that it focuses on DNS interactions over IPv4
and does not consider IPv6. While we are currently expanding our experiments
to cover IPv6, we note that IPv4 still dominates DNS traffic: in the major CDN
dataset, queries conducted over IPv4 outnumber IPv6 by 11:1. Further, there is
no reason to believe that the choice of the network-layer protocol version would
affect the application-level behavior of DNS resolvers7.

Next, we describe the details of the experiments run to produce each dataset.

Open Resolvers Scan We scan the entire IPv4 public address space (barring
reserved addresses and our exclusion list, see Section 7) between February 10
and 11, 2021, with DNS queries for names from our experimental zone, in search
of open resolvers. If the scanned IP address returns a DNS response with a
NOERROR response code and a resource record, the scanner will send follow-up
queries to the discovered ingress resolver to assess support for DNS-over-TCP.
Because some ingress resolvers dynamically change IP addresses – a previous
study shows that 52.2% of the ingress resolvers change their IP addresses within
a week [22] – we launch the DNS-over-TCP capability testing right after the
discovery of an ingress resolver, to minimize interference caused by address churn.
All queries encode the IP address of the ingress resolver and a nonce so that they
cannot be answered from cache.

In probing the discovered ingress resolvers, our goal is to test the TCP-
fallback capability of the egress resolvers the open resolvers use by forcing the
egress resolver to switch to TCP after a UDP query. The scanner sends two
follow-up queries, one A-type and one MX-type (for ease of comparison with our
other datasets below which use the same type). Our experimental zone has a
single ADNS server that is configured to respond to both queries with the TC
flag set and 0 resource records, so that the egress resolvers must re-query over
TCP to obtain the records.

Enterprise Resolvers Scan In an effort to assess recursive resolvers used by
major enterprises, which are often protected by firewalls that forbid any DNS
queries from the outside, we leverage a technique introduced by Klein et al. [19]
to induce MX queries from the resolvers used by enterprises to our ADNS. The
experiment was conducted on February 15, 2021, and used the Majestic Top

7 Indeed, a study [30] concerning large DNS responses did include both IPv4 and IPv6
traffic and did not note significant variations in behavior between the two.
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Fig. 2: Inducing a DNS resolution
from a private enterprise resolver.
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Fig. 3: Egress resolvers discovered in our
experiments.

Million “Root Domains List” [27] – which includes many major enterprises –
fetched on February 14, 2021.

We measure TCP fallback support of enterprise resolvers using the following
process, illustrated in Figure 2:

1. For each mail server used by the enterprise domain (obtained from the MX
records of the domain), in the decreasing preference order, we send an email
through SMTP and, if failed, through SMTPS, using Python’s smtplib li-
brary. We stop iterating through the mail servers in this enterprise domain
if smtplib reports no error. We use random strings as recipients of our emails
(i.e., “[random]@majestic.domain”), which are highly unlikely to collide with
existing recipients, and we embed the enterprise domain in the sender’s email
address (i.e., “research@majestic-domain.our.zone”).

2. When the destination mail server receives the email for the non-existent re-
cipient, the mail server should generate a delivery-status-notification (DSN)
and send it back to the original sender, as required by RFC 5321 [21]. To
return the DSN, the mail server must lookup via DNS the MX record of the
original sender’s domain (i.e., “majestic-domain.our.zone”), although some
resolvers send our ADNS an A-type query for the same name, instead. We
interpret the latter as a misunderstanding of implicit MX records stated in
RFC 2821 [20], which allows mail servers to use the A record of the sender’s
domain if no MX records are found. For the purposes of our study, either an
MX-type or A-type query from the resolver is sufficient, so we use both.

3. The enterprise resolver interacts with our ADNS to resolve either an MX or
A query over UDP. Since our ADNS responds to either query with an empty
answer section and the TC flag, the resolver must support TCP-fallback in
order to successfully obtain the MX and A records.

4. If the mail server receives a successful response from its resolver, the mail
server then sends the DSN back to our scanner (which we set up to double
as the MX server for our zone). Regardless, we can assess the TCP-fallback
capability of the resolver by observing a TCP query from it (or lack thereof).
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Note that for the above technique to work, several prerequisites must be met.
First, the mail servers must be willing to receive mail from our SMTP client.
Second, the mail server must attempt to send the DSN back to the original
sender. Often in our measurement the mail servers indicate an error within the
SMTP interaction instead of resolving our MX record and delivering the DSN.
Further, some mail servers have catch-all inboxes and provide no feedback about
non-existing recipients at all. Another frequent occurrence is that the resolver
performs the MX lookup, but the mail server does not send a DSN message to
our scanner. In this case, we can still ascertain that the resolver is TCP-fallback
capable since the lookup completed.

Another assumption behind this experiment is that enterprise mail servers
use the enterprise’s general resolution path rather than resolve queries them-
selves (in which case we would be measuring the TCP-fallback capability of the
mail servers rather than the enterprise resolvers). A supporting evidence for this
assumption is that there is a large overlap between the resolvers discovered in
our enterprise and open resolver scans (see below).

RIPE Atlas Probes Experiment We use the RIPE Atlas platform to gain
an insight into another slice of resolvers. RIPE Atlas [33] is a volunteer-based
Internet measurement platform managed by RIPE NCC, where each volunteer
deploys a measurement probe in their home or institutional network, and ex-
perimenters can conduct various measurements from the probes, including DNS
resolutions. RIPE Atlas has probes deployed worldwide, but particularly dense
deployment in Europe and North America. We used 11,522 probes in our experi-
ments – all available probes that were suitable for our purpose, i.e., those having
an IPv4 prefix and not tagged as having problems in resolving DNS queries.

Similar to the technique in the open resolver scan, we embed the probe ID
in the DNS query, which makes each probe’s query unique and ensures that
no resolvers reuse cached responses to answer queries from multiple probes.
Further, we direct the probes to use their configured DNS resolvers – whether
they happen to be open or closed – to process our queries. Thus, the RIPE Atlas
dataset explores a potentially distinct set of resolvers from our open resolver and
enterprise email scans. Like the open resolver scan, a RIPE Atlas probe sends a
type-A and a type-MX query to its configured resolver, and our ADNS replies
to both of these queries with zero resource records and the TC flag.

DNS Logs of a Major CDN Lastly, we collect one week in February 2021
of aggregated logs from the authoritative DNS servers of a major CDN. The
dataset includes source IP addresses (i.e., egress resolver) and the counts of
queries from each address fielded by the CDN during that week. Due to the high
aggregation level, we are not able to identify whether the resolvers in the logs are
TCP-fallback capable by observing TCP follow-up queries to TC flag responses.
Instead, we use the CDN dataset to assess the coverage of our study and use the
relative counts of queries to evaluate the popularity of the resolvers we measure.

Measurement Instrumentation Losses Our measurements are susceptible
to packet losses due to unreliable UDP messages, the ADNS potentially not
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responding to some queries due to overload, and the scanner not exploring dis-
covered ingress resolvers. We can’t formally assess the number of UDP datagrams
lost in-network before they reach our hosts, but we have no reason to suspect
an unusually high packet losses during our experiments. On the ADNS side,
we find that 16 out of 13,836,165 total UDP queries were left without response
across all three datasets, which is negligible. Among the TCP queries, 13,793
out of 11,692,210 TCP queries were not responded to, a high response rate of
99.9%. Moreover, our classification strategy (see Section 4.3) is based on the
TCP queries that arrive; thus, the unresponsive TCP queries do not affect the
accuracy of our egress resolver classification.

As time is a factor in our algorithm (see Section 4.3), we investigate how
quickly our ADNS responds to UDP queries. The average response time for UDP
queries is 38µs, with 3.0ms standard deviation, so the response is usually very
quick. Indeed, the ADNS response took greater than 1s for only 302 (0.002%)
of UDP queries, still substantially below the 2s threshold used in our algorithm.
We conclude that delays in our ADNS do not materially affect our analysis.

Another source of measurement loss is on the scanner during the open re-
solver scan. Our scanner uses an LRU cache to keep track of the most recent
200K {QNAME, QTYPE} pairs that produced answers from scanned ingress
resolvers. This is to ensure that our scanner does not send follow-up queries
to superfluous repeated responses to our scanning queries that some ingress re-
solvers keep sending. The entries in the cache are identified using a 64-bit xxHash
value for performance, and the check if an arriving response is already present in
the LRU cache may return false positives on collisions, in which case our scanner
will not measure the responding ingress resolver. Our scanner explored 3,051,701
out of 3,052,913 (99.96%) responding ingress resolvers. The small number of un-
explored ingress resolvers slightly reduces the number of assessed egress resolvers
but does not materially affect our results.

4.2 Datasets

In the open resolver scan, we discovered 97,797 egress resolvers, and 3,052,913
open ingress resolvers.8 It is important to note that, while the open resolver
scan only engages with DNS resolution systems through open ingresses, the
measured egress resolvers include both open and closed ones. In particular, we
found a sizable number of egress resolvers discovered through the open resolver
scan to also serve enterprise networks.

In the email scan, we discovered 24,653 egress resolvers, serving enterprises
responsible for 192,164 websites from the Majestic 1M list. In the rest of the

8 We discover substantially more open ingress resolvers than other recent scans (
[2,36]). The likely cause of this discrepancy is that those scans do not include ingress
resolvers that respond from a different port (not 53) than the port used in probing, a
behavior first observed in [34]. Indeed, our results include 2,010,584 (65.9%) ingress
resolvers that do respond from port 53, closely matching the number of resolvers
reported by the previous scans.
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paper, we refer to these resolvers as “serving a domain” or “used by a domain”
for brevity, meaning that these resolvers provide resolution services for clients
from the enterprises that operate or are responsible for those domains. We stress
that in this experiment, we assess resolvers that the enterprises use, regardless of
whether they are operated by themselves or an external DNS service provider.

Finally, in the RIPE Atlas measurement, we discovered 10,795 egress re-
solvers.

While each of the above datasets aims to capture a distinct class of egress
resolvers – the open resolver scan finds public resolvers or those used by open for-
warders, the email scan finds resolvers used by enterprises, and the RIPE Atlas
scan finds closed resolvers in use by home networks or institutions – unsurpris-
ingly, there is some overlap. Figure 3 is a Venn diagram of the egress resolvers
in each dataset. While the overlap is significant, each datasets contributes a sig-
nificant number of net new egress resolvers. Thus, all three datasets contribute
to a more comprehensive picture of DNS-over-TCP support in the wild. In the
aggregate, we discover and investigate 116,851 egress resolvers across all three
datasets. These resolvers contribute 66.2% of the external queries in the CDN
logs. Note that the CDN uses DNS internally as part of the platform operation,
and DNS queries originating from the CDN do not represent end-user resolu-
tions. Since this CDN delivers large amounts of popular content accessed by most
Internet users, this finding shows that, despite drastic reduction in the number
of open resolvers, active measurements can still assess a significant portion of
the DNS activity on the Internet. For the rest of the paper, we focus on the
aggregate set of egress resolvers, unless otherwise stated.

4.3 Resolver Categorization Algorithm

Our open resolver scan finds a large fraction of failed DNS interactions when
the ADNS forces TCP fallback: almost a quarter (24.35%) of the overall type-A
resolutions involving TCP fallback ultimately fail, i.e., the ingress resolver re-
turns a response with an error flag, or response with no TC flag and no resource
records, or no response at all (despite having been discovered through a success-
ful UDP-based DNS probe) or the response carrying a wrong transaction ID.
However, it is unclear if these failures are not due to a potential bias in the set
of the ingress resolvers we are able to interact with, since they are selected based
on a specific trait (being open to external queries) that distinguishes them from
all other ingress resolvers. Thus, our assessment of the resolvers’ TCP fallback
capability focuses on characterizing egress resolvers rather than on whether or
not the ingress resolvers ultimately returns the answer to our scanning host. As
noted in Section 4.1, we are able to assess the egress resolvers responsible for
two-thirds of the overall DNS activity observed by ADNS of the major CDN.

Identifying TCP-fallback capability of an egress resolver in our datasets re-
quires associating the UDP query it sends with the subsequent TCP query.
Several factors significantly complicate this seemingly easy task. First, we find
that a single query emitted by our scanner often elicits multiple queries at our
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Fig. 4: Examples of a “canonical scenario” where it is trivial to match the UDP
and TCP queries and a “non-canonical scenario” where it is hard to tell whether
resolver A or B triggers the TCP-fallback.

ADNS (see Section 4.4). This complicates matching a UDP query with the fol-
lowup TCP query because multiple UDP queries may be candidates for being
associated with the same TCP query. Second, these queries may come from dif-
ferent egress resolvers, and in fact TCP queries may come from different egress
resolvers than the UDP queries they succeed, a behavior indicative of collabo-
rative resolution previously reported (e.g., [3, 31,34]).

To illustrate, in the “canonical” TCP fallback scenario shown in Figure 4A,
matching the UDP and TCP queries, and identifying the resolver involved as
TCP fallback capable, is trivial – there is only one query of each type. However,
Figure 4B shows an example of a scenario, where it is unclear, from the ADNS
vantage point, which of the two UDP queries triggered TCP-fallback, and which
of the two resolvers, A or B is TCP fallback capable.

This section presents our algorithm to determine TCP-fallback capability, as
well as the rationale for selecting key parameters of the algorithm.

At the beginning of our data processing pipeline, packet traces captured at
our ADNS during the three active measurements are fed to a preprocessing stage.
A converter extracts all the DNS messages from the trace, including messages
in UDP datagrams as well as reassembling TCP streams to find DNS messages
across segments. Next, the few UDP queries that our ADNS did not respond to
(see Section 4.1) are discarded. In these cases, the egress resolver did not receive
a response, let alone one with the TC flag, so we cannot measure TCP-fallback.
Conversely, the TCP queries to which our ADNS did not respond are retained
because the TCP query even without a response is sufficient to identify TCP-
fallback. If the egress resolver repeats the TCP query after the query to which it
received no response, the repetitions are discarded to prevent potential incorrect
association with other UDP queries.
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Next, the algorithm attempts to associate the UDP and TCP queries and
mark matched UDP queries as “TCP-fallback success”, unmatched UDP queries
as “TCP-fallback failure”, and the queries that it could not unambiguously
match to a single TCP query as “indeterminate”. Finally, the algorithm classifies
egress resolvers as TCP-fallback capable or not based on the prevalence of their
UDP query markings.

Associating UDP and TCP-Fallback Queries The heart of the algorithm
in UDP-to-TCP query matching. It does this by first separating the DNS queries
by QNAME and QTYPE, since the UDP and TCP-fallback query must match
on these fields. The queries are then clustered such that all the UDP queries in a
cluster can plausibly be associated only with the TCP queries in the same clus-
ter, and no cluster can be split without removing some plausible UDP-to-TCP
query association. By “plausible association” we mean a UDP query followed
by a TCP query within a certain time threshold tthreshold, a parameter in the
algorithm. UDP queries outside any clusters have no plausible associations with
TCP queries and are marked as “TCP-fallback failures”. Our matching algo-
rithm proceeds to act upon individual clusters.

Appendix A has the full algorithm for constructing query clusters. Briefly, a
cluster has the following attributes:

1. For any UDP query within a cluster, there must be at least one TCP query
that is within tthreshold seconds after it. Otherwise, the cluster can be split
after the UDP query in question.

2. For each pair of consecutive TCP queries in a cluster, Ti and Ti+1, there is a
UDP query U that precedes Ti and also precedes Ti+1 by less than tthreshold
seconds. This ensures that U can be plausibly associated with both Ti and
Ti+1 – otherwise, the cluster could be split after Ti.

3. A cluster can include no UDP queries (e.g., if there is a spurious isolated
TCP query or a TCP query that is removed from a preceding UDP query
by more than tthreshold), but always includes at least one TCP query.

4. As a corollary of (1), a cluster always ends with a TCP query in chronological
order.

Figure 5 shows an example of a series of queries that arrive at ADNS in
the aftermath of a single probe to an ingress resolver. UDP query #13 doesn’t
precede any TCP query, and therefore is labeled as TCP-fallback failed by our
algorithm. The rest of the queries are split into four clusters The first cluster
consists of queries #1 through #4 because UDP query #1 is within tthreshold
seconds before TCP query #4. TCP query #5 is in a cluster alone because there
are no UDP queries within the time threshold preceding it. UDP query #6 and
TCP query #7 make up the third cluster, and the remaining queries #8 through
#12 form the last cluster.

Within a cluster, the algorithm scans queries in chronological order and at-
tempts to greedily assign each UDP query to the next unclaimed TCP query
within the tthreshold window. If all UDP queries are successfully assigned to
their own exclusive TCP query, they are marked as TCP-fallback success. Oth-
erwise, all UDP queries that could plausibly match to the same TCP query are
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Fig. 5: Splitting queries into clusters based on plausible TCP-fallback association.

marked as indeterminate since we cannot determine conclusively which triggered
TCP fallback and which did not.

Returning to the clusters in Figure 5, while both UDP queries #1 and #3 can
be associated with TCP query #4, this would leave TCP query #2 unmatched
– an unlikely scenario. The algorithm instead greedily matches UDP query #1
with TCP query #2, and UDP query #3 with TCP query #4. Thus, both UDP
queries are marked as TCP-fallback success. UDP query #6 is trivially associated
with TCP query #7 because there are no other UDP queries that can plausibly
associate with TCP query #7. In the fourth cluster, the algorithm will attempt
to greedily match UDP query #8 with TCP query #10, then UDP query #9
with TCP query #12, and then is left with UDP query #11 that could not
match to a dedicated TCP query. At this point the algorithm will mark all three
UDP queries as indeterminate because it cannot tell if UDP queries #8 and
#9 should share TCP query #10 (and thus be marked indeterminate) leaving
UDP query #11 to be exclusively matched to TCP query #12 (and thus marked
TCP-fallback success), or UDP query #8 should be exclusively matched to TCP
query #10 (thus marked TCP-fallback success) while UDP queries #9 and #11
should share TCP query #12 (and thus be marked indeterminate).

Selecting Time Threshold The algorithm uses one parameter which must be
tuned, tthreshold – the time for matching UDP queries to potential TCP-fallback
queries. Logically, this time comprises the propagation time of the UDP response
with TC flag from the ADNS to the egress resolver, processing time at the egress
resolver, and the TCP handshake followed by the initial data segment carrying
the TCP query. Clearly, this time can vary substantially among resolvers.

To estimate tthreshold, we look at scenarios where we can unambiguously
associate UDP and TCP queries, i.e., those resolutions that contain exactly
one UDP query followed by exactly one TCP query. We call these scenarios
“canonical”. Because in the canonical scenarios we can be confident that the
TCP query is a result of TCP-fallback from the UDP query, we measure the
time between the queries and use the times to inform our choice of tthreshold.

Figure 6 shows the cumulative distribution function (CDF) of the measured
time between UDP and TCP queries in the canonical scenarios in our three
datasets. In all three datasets, nearly 100% of TCP-fallback happens within
2 seconds. Thus, we choose 2 seconds for tthreshold as a conservative estimate
of the maximum time TCP-fallback should take. The CDFs do show that this
threshold will miss a small number of cases where TCP-fallback takes longer
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line shows tthreshold.

than 2 seconds. However, a resolver that requires more than 2 seconds to fallback
can be treated as TCP-fallback incapable (or at least “impaired”) since it will
negatively impact the end-user experience.

Categorizing Egress Resolvers The above algorithm labels individual UDP
queries as leading to TCP-fallback success, failure, or indeterminate. However,
moving from the characterization of individual queries to the overall characteri-
zation of the egress resolvers involves several complicating issues.

One issue is that many egress resolvers in our datasets handle multiple
queries, and we find that the labeling of those queries sent by the same resolver
may not be consistent. There are many possible causes of this inconsistency.
First, UDP queries in complex resolution patterns may be marked indetermi-
nate rather than TCP-fallback success or failure due to coinciding with UDP
queries from other egress resolvers, with different TCP fallback capability. Sec-
ond, UDP queries that arrive from the same IP address may in fact come from
different resolvers in a server farm behind a common NAT box, again with dif-
ferent TCP-fallback capability. Finally, egress resolvers may selectively perform
TCP-fallback due to rate limits, policy, or other factors. Thus, we characterize
the overall TCP-fallback capability of an egress resolver by the predominance of
their individual UDP query markings.

Another complication is that indeterminate UDP queries introduce uncer-
tainty into the characterization. To address this issue, we bracket its effect by
treating indeterminate queries as TCP fallback-success or failure and consid-
ering, respectively, the optimistic and pessimistic successful fallback rates of
resolvers. We refer to the resolvers characterized under these assumptions as,
respectively, optimistically and pessimistically TCP-fallback (in)capable.

Figure 7 shows the CDFs of the successful fallback rate for egress resolvers in
each of our three datasets. A majority of resolvers exhibit successful fallback rate
of 1.0, removing the first complication in characterizing their TCP fallback ca-
pability. In the aggregated dataset, the successful fallback rate is 1.0 for 102,802
to 110,394 (88.0%- 94.5% of all) of the egress resolvers depending on pessimistic
or optimistic treatment of indeterminate queries, making these resolvers opti-
mistically or pessimistically TCP-fallback capable. To classify the minority of
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egress resolvers with the successful fallback rate between 0.0 and 1.0, we opt to
take a threshold approach. At around 0.7 on the X-axis (the dotted red line),
we note that the lines appear to be fairly flat, meaning that large steps in the
threshold would produce small changes in the classification. Thus, we classify the
egress resolvers with the successful fallback rate of 0.7 or higher as TCP-fallback
capable. In addition to being insensitive to variations in value, this threshold
requires the resolver to exhibit fallback success – at least under the optimistic
assumptions – in a sizable majority of UDP queries in order to be considered
TCP-fallback capable.

In the rest of the paper, we will use a range to represent the number of
TCP-fallback capable and incapable resolvers according to the optimistic and
pessimistic calculations.

Validating the Algorithm We validate our algorithm by looking at the end-
to-end resolution outcomes for A-type queries in our open resolvers scan, with
the following three assumptions:

1. If a DNS query is resolved exclusively by TCP-fallback incapable egress re-
solvers, the ingress resolver should reply to our scanner with a failed DNS
response or no response at all.

2. If a DNS query is resolved exclusively by TCP-fallback capable egress re-
solvers, the ingress resolver should reply to our scanner with a successful
DNS response.

3. Should our matching algorithm fail to match a UDP query with the fallback
due to the latter being delayed by longer than tthreshold, the end-to-end
response would also be delayed. As mentioned earlier, characterizing the
resolver involved as incapable is not unjustified because of the excessive
response time.

Note that we expect these assumptions to only hold as general trends because –
as discussed earlier – the same egress resolver (as represented by its IP address)
may exhibit inconsistent TCP-fallback capability in different resolutions but in
the end is categorized by the algorithm as either TCP-fallback capable or not.

We consider the end-to-end resolution successful if our scanner receives a
response with the matching transaction ID and the NOERROR response code,
and which either carries the TC flag (71.8% of successful responses) or, if the
TC flag is not set, includes some resource records in the answer section (28.2%
of successful responses); otherwise the resolution is considered to have failed. A
response that carries the TC flag – which may have zero answer records – we
consider successful because, after such a response, a real client would retrieve
the answer records through TCP. This assumption is conservative because one
cannot preclude the possibility that the upstream resolvers blindly copy back the
ADNS response with TC flag, and without the ability to perform TCP-fallback.
We could not further assess the TCP-fallback capability of the resolution path
by sending a TCP query to the ingress resolver, because most ingress resolvers
that we found to be open to UDP queries are not open to TCP queries. However,
65.7% of all transactions considered successful – including 37.5% with the TC
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flag – contain at least one resource record returned by our ADNS over TCP,
precluding the possibility of the success misjudgment.

Of all the resolutions that were handled by optimistically TCP-fallback ca-
pable egress resolvers only, 88.9% returned a successful response to our scanner;
in contrast, for the resolutions handled by optimistically TCP-fallback inca-
pable egress resolvers only, 79.9% returned failed responses. Furthermore, for
the 20.1% of queries that were proxied by optimistically TCP-fallback incapable
resolvers only but came back to our scanner as successful responses, we found
that their end-to-end response time is significantly higher than the queries that
were proxied by TCP-fallback capable egress resolvers. Comparing the cumu-
lative distribution functions of the two sets of response times above, shown in
Figure 8, 75% of resolutions involving all incapable egress resolvers had end-
to-end response time over 1 second, while only 25% of resolutions involving all
capable egress resolvers were as slow.

These results show high correspondence between our algorithm’s character-
ization of TCP-fallback capability of egress resolvers and positive end-to-end
resolution outcomes when fallback is required. We conclude that our algorithm
can successfully characterize resolvers from this perspective.

Cluster pattern % of clusters
U 0.7%
UU 0.4%
>2 UDP queries 2.0%
T 2.9%
UT 50.4%
UUT 1.7%
UTUT 19.2%
UUTT 13.6%
Other 9.0%

Table 1: Pattern prevalence of query
clusters. Many rare patterns are ag-
gregated together in “Other”.
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Fig. 8: CDF of the end-to-end response
time for successful TCP-fallback re-
sponses with (a) optimistically TCP-
fallback incapable and (b) optimisti-
cally TCP-fallback capable egress re-
solvers

4.4 DNS Resolution Patterns

Query clusters represent scenarios unfolding in individual DNS resolutions of
a domain name. We now examine the patterns of UDP and TCP queries in
these clusters. This analysis sheds light on the sequence of DNS transactions
comprising a single resolution when the authoritative DNS server forces a TCP
fallback. Given that each cluster includes a sequence of UDP and TCP queries
for the same QNAME/QTYPE pair, we represent query patterns in clusters as
sequences of symbols “U” and “T” to denote, respectively, the UDP and TCP
queries in a cluster, in chronological order.
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Table 1 breaks down the query clusters by pattern. Note that the table in-
cludes patterns composed exclusively of UDP queries even though the algorithm
does not consider them as “clusters” for the matching purpose. These patterns
include all UDP queries for a given QNAME/QTYPE pair that cannot be plau-
sibly associated with any TCP queries, i.e., are TCP-fallback failures.

First, we note that 2.9% of clusters contain a singleton TCP query that
could not be matched with any UDP query according to our algorithm. This
does not match our expectation that unsolicited TCP queries are very rare, and
therefore we investigate them further. The singletons account for 0.8% of all
DNS queries in our dataset and arrive from 1549 different egress resolvers. One
possible explanation for the singletons is TCP-fallback that took longer than
tthreshold (2) seconds. Indeed, our ADNS did receive UDP queries from all but
15 of these resolvers at some point during our scans, and 79% of the singletons
are preceded by at least one other cluster that does contain a UDP query. Still,
since our algorithm could not associate the singletons with any UDP query, they
are excluded from our analysis, potentially leading to UDP queries being marked
as TCP-fallback failure. In an effort to determine whether the singletons affect
our results, we bound their potential impact by marking each as TCP-fallback
success, since the egress resolvers involved are clearly capable of DNS-over-TCP.
We find that the results of our analysis in Section 4.5 do not change discernibly
since most of the egress resolvers sending the singletons are determined to be
TCP-fallback capable anyway from their other interactions: the number of TCP-
fallback capable resolvers increases by just 26 to 33 for optimistic and pessimistic
cases, respectively, from over 100K TCP-fallback capable resolvers found without
the singletons. Thus, we exclude the singleton TCP queries for simplicity.

Surprisingly, the “canonical” expected scenario, where a single UDP query
is followed by a single TCP-fallback query, represents barely a majority of inter-
actions, only 50.4%. Others involve multiple redundant queries, with a sizable
number, 83,987 (9.0%), of interactions following complex patterns beyond those
listed in the table. While DNS scans typically leave a low-rate residual trickle
of queries arriving long after the scan, the fact that so many resolvers, includ-
ing well-known and well-administered ones, routinely send redundant queries, is
unlikely due to obscure bugs. These behaviors more likely represent complicated
resolution processes and require a separate study. In the meantime, the complex-
ity and diversity of the cluster patterns highlight the need for a commensurately
sophisticated matching algorithm, of the kind we use in this paper, to identify
the TCP-fallback capabilities of the resolvers involved.

4.5 Results

In this section, we share the results of our analysis. As shown in Table 2, of the
116,851 egress resolvers discovered across all three datasets, between 111,284 to
113,673 (95.2% - 97.3%) are TCP-fallback capable according to the pessimistic
and optimistic classification, respectively. This leaves a sizeable number, under
either classification approach, of incapable egress resolvers in the wild, suggest-
ing that the Internet is not ready for DNS-over-TCP, as content providers are
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Resolver Category Num. % resolvers % queries to CDN

Optimistically capable 113,673 97.3% 98.9%
Pessimistically capable 111,284 95.2% 95.6%

All egress resolvers 116,851 100% 100%

Table 2: TCP-fallback capabilities of egress resolvers.

unlikely to move to a protocol that cuts off a non-negligible amount of their
consumers.

We also note that many resolvers support EDNS0 extended payload [6],
which allows handling of oversized messages over UDP and thus reduces the need
for TCP. Interestingly, we find that TCP-fallback incapable resolvers are more
likely to support EDNS0 than their TCP-fallback capable counterparts. From
our ADNS logs, 65,501 (56.0%) of all the egress resolvers support EDNS0, while
2037 (64.1%) of optimistically classified, and 3633 (65.3%) of pessimistically
classified TCP-fallback incapable resolvers support EDNS0. We note, however,
that EDNS0 and DNS-over-TCP are not interchangeable because in EDNS0 the
server must agree to the payload size the client advertises and very large mes-
sages may still exceed it, and because DNS-over-TCP mitigates amplification
attacks while EDNS0 exacerbates them. In any case, TCP support is mandatory
per RFC 7766 [8], so egress resolvers that support EDNS0 but not TCP are still
in violation of the specification.

We consider the significance of the TCP-fallback incapable egress resolvers,
that is, how actively they are used in practice. To this end, we turn to the DNS
Logs of a Major CDN dataset to assess how many DNS queries the egress re-
solvers drive. The 2.7% - 4.8% of egress resolvers that are TCP-fallback incapable
contribute 1.1% to 4.4% of all queries arriving at the CDN from the resolvers
we study. Thus, TCP-incapable egress resolvers are roughly as active as their
TCP-fallback capable counterparts.

Enterprise-Centric View Out of the 999,5469 domains in the Majestic Top
Million “Root Domains List” used in our Enterprise Resolvers Scan, we were
able to receive DNS queries from resolvers serving 192,164 domains, or 19.2%.
The rest either refused our SMTP connection or responded with an error within
the SMTP interaction, without ever sending our ADNS a DNS query. In this
section, we classify the domains based upon the TCP-fallback capability of the
DNS resolvers used by the enterprises that own those domains – which we again
stress could be operated or administered by the enterprises themselves or third-
party DNS service providers. Note that the relationship of domains to resolvers
may be many-to-many: we observe both (i) domains served by several resolvers,
with or without TCP-fallback capability (see below for the techniques we use
to detect these cases), and (ii) cases where a resolver serves multiple domains.
Moreover, the same resolver may successfully fallback to TCP when conducting
a resolution on behalf of one domain, yet fail to fallback for another domain.

9 We missed 454 domains due to an issue with retrieving the full list from Majestic’s
website.
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One way we detect that a domain uses multiple resolvers is when the do-
main’s ADNS contains multiple MX records, and our scanner tries several of
the listed mail servers searching for one that would accept our email. Some mail
servers trigger DNS queries even if they don’t accept our email, and we observe
these queries coming from different egress resolvers. However, as reported in
Section 4.3, some DNS interactions involve complex resolution patterns, and we
also find that a single attempt at an email to a domain may trigger repeated
DNS queries from this domain, sometimes from different egress resolvers. This
provides us with another, incidental, way to observe a domain that uses multiple
resolvers. Of all the measurable domains, we detected 103,549 (53.9%) domains
use multiple recursive resolvers.

We break down the measurable 192,164 domains into the following categories
according to the resolvers that serve them, again using our pessimistic and op-
timistic classification, respectively:

– 190,045 - 191,371 (98.9% - 99.6%) domains use only resolvers classified as
TCP-fallback capable in the enterprise dataset, and we observe at least one
successful TCP fallback in the email scan of each of these domains. This
means that the clients of the enterprises responsible for these domains are
unlikely to be negatively impacted by an ADNS-triggered TCP fallback.

– 1028 - 479 (0.5% - 0.3%) domains are served by both TCP-fallback capable
and incapable resolvers, and we still observe at least one successful TCP
fallback when scanning these domains.

– 937 - 160 (0.5% - 0.1%) domains were not observed to use any TCP-fallback
capable resolvers, yet we observe at least one successful TCP fallback when
scanning each of these domains. Note that this is possible, since a resolver
classified as TCP-fallback incapable may still fallback for some queries (<70%).

– 152 (0.1%) domains do not use any TCP-fallback capable resolvers, and we
observed no TCP queries from our email scans of the corresponding domains.

– 2 (0.00%) domains are served by at least one TCP-fallback capable resolver
(i.e., the resolver performed fallback for some websites), yet no TCP queries
were observed when scanning the corresponding domains.

Overall, compared to our resolver-centric results, enterprises are more pre-
pared for unilateral TCP fallback enforced by ADNS, with 98.9% - 99.6% of the
domains using exclusively TCP-fallback capable resolvers and only 154 domains
served by resolvers that did not send any TCP queries during our scan.

5 DNS-over-TCP Support by Authoritative DNS Servers

We now turn to the other side of DNS interactions and consider DNS-over-
TCP support by ADNS. Failure to support DNS-over-TCP is a violation of
RFC 7766 [8], so in this section we examine whether ADNS in the wild accept
unsolicited TCP connections and respond to the DNS queries sent over those
connections. To this end, we consider three sets of domain names: (i) 10.6 mil-
lion domains queried in a week through a resolution service operated by the
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major CDN (“All Domains”), measured on January 3 and 4, 2022, and (ii) pop-
ular websites as represented by the Majestic top-1K “root domains” (“Popular
Websites”), measured on January 5, 2022 and (iii) 47 content delivery networks,
measured on January 5, 2022. whose domains we identified in a separate project
(“CDNs”). For the All Domains set, we extract second-level domains (e.g., “ex-
ample.com”) from the QNAME in queries the resolution service receives. If the
domain includes two two-character labels (e.g., “co.uk”) we also extract the third
label (e.g., “example.co.uk”) to cover country-code domains10. Next, and for all
three sets, we discover the NS records of the ADNS serving the domain names in
the sets, using publicly available recursive resolvers. Finally, we resolve – using
public recursive resolvers again – the name in each NS record to A records, re-
sulting in one or more IP addresses of the ADNS serving each domain name. We
note that, in the case of large-scale ADNS operators, such as CDNs, very high-
volume content providers, or third-party DNS service providers, this technique
is likely to obtain only a small subset of the potentially large number of ADNS
operated by the ADNS platform, since some providers use anycast to distribute
queries among their ADNS or return different NS records to different resolvers.
Still, even with this incomplete measurement, we find – as discussed below – a
number of ADNS with problematic DNS-over-TCP support.

To assess the TCP support of a domain name, we send a TCP query to each
ADNS serving the domain name. An ADNS supports TCP if it both accepts
the TCP connection and responds to the DNS query, both within a 2 second
timeout. We note that a TCP query may fail either because the ADNS does
not support DNS-over-TCP or because the ADNS is offline. While accepting
a TCP connection is sufficient to determine that the ADNS is online, a time
out at this step may simply indicate the ADNS is offline. In this case, we send
5 UDP queries with a 0.5 second interval between each, to check the ADNS
status. If the ADNS successfully responds to any one of them, the ADNS is
online and TCP-incapable, otherwise it is offline and we discard the ADNS from
our experiment. Note that our experiments are measuring either the behavior
of the ADNS or the middleboxes fronting the ADNS, and cannot distinguish
between the two. However, that is a distinction without meaning: If an ADNS
is only accessible through a middlebox that blocks DNS-over-TCP, then our
analysis reflects the experience of an actual DNS client attempting, per RFC,
to use TCP to communicate with this ADNS. In all, we measure DNS-over-
TCP support for 445,293 ADNS servers in the All Domains, 2835 ADNS in the
Popular Websites, and 224 ADNS in the CDNs sets, respectively. In addition,
22,980 ADNS servers were found to be offline in the All Domains set and thus
excluded; no ADNS were offline in the Popular Websites or CDN sets.

10 While this technique is not exhaustive in discovering all domains from the available
QNAMEs, it serves to provide a reasonably broad list for our subsequent measure-
ments. In hindsight, using Mozilla’s public DNS suffix list at https://publicsuffix.org/
would have been better.
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All Domains Popular Websites CDNs
Domain Category Num. % Num. % Num. %

TCP queries succeed with all ADNS 10,067,248 95.1% 954 96.5% 36 76.6%
TCP queries fail with all ADNS 280,981 2.7% 6 0.6% 10 21.3%
Mixed outcome of TCP queries 242,571 2.3% 29 2.9% 1 2.1%

All domains tested 10,590,800 100% 989 100% 47 100%

Table 3: Domains using ADNS with a given DNS-over-TCP capability.

Table 3 summarizes the results of this experiment11. Over 5% of All Domains
fail to resolve a TCP query through some of their ADNS. Among popular web-
sites, which one would hope to be administered well, still around 3% exhibit
failures to resolve the website over TCP from at least some of their ADNS. Sur-
prisingly, CDNs are even more likely to fail: 10 of the 47 CDNs studied do not
support DNS-over-TCP at all, at least by the ADNS probed. See Appendix B
for the tested CDN list and individual CDN results. We conclude that egress
resolvers choosing to switch to TCP as their transport medium will encounter a
non-negligible amount of resolution failures as a result.

6 Race Condition in DNS-over-TCP Connection Reuse

The RFC standards [8, 29] recommend that a client and server keep TCP con-
nections open to amortize the cost of the TCP handshake over multiple DNS
resolutions. These standards further recommend letting clients initialize the clos-
ing process, but both parties are free to close the connection at will, after either
a timeout or the completion of a DNS resolution.

Our ADNS supports TCP connection reuse, using the following policy: (1)
A new TCP connection times out if no query arrives on this connection for two
seconds, and (2) A TCP connection used by some queries times out after being
idle for five seconds. The timeout values are shorter than the defaults of some
mainstream DNS server implementations such as BIND9 due to the high traffic
in our experiments but still in compliance with the recommended settings of
RFC 7766 (“it is RECOMMENDED that the default server application-level
idle period be on the order of seconds”) [8].

A number of egress resolvers observed across our scans in Section 4.1 are
shared among multiple ingress resolvers or different enterprise domains. When
we happen to scan these resolvers in close time proximity, we observe them
reusing their TCP connections to our ADNS. Of the 114,909 resolvers that
used TCP for some of their queries to our ADNS, we observed 3653 to reuse
a TCP connection, with the longest connection lasting over 24 hours. Further-
more, these connection-reusing resolvers are very active, accounting for 37.5% of
all the queries from the resolvers we discovered in the major CDN’s DNS logs. In
fact, by deliberately grouping email probes close in time for the enterprises that

11 The table includes only 989 of the 1K popular websites because eleven of these
domains either provide no NS records, the name servers listed fail to resolve to IP
addresses, or none of the IP addresses responded to TCP or UDP queries.
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Fig. 9: An example of a race condition, where the client is attempting to reuse
an established connection that the server is closing.

share egress resolvers, we were able to induce more connection reuse and observe
13.5% of enterprise resolvers (3135 out of 23197 that established TCP connec-
tions to our ADNS) reuse their connections. Clearly, TCP connection reuse is
deployed in production on resolvers that are responsible for a significant part of
the Internet DNS activity.

As a worrisome observation, we found incidents of a race between a con-
nection reuse attempt from the egress resolver and a connection closing by our
ADNS. Significantly, this race condition is not an artifact of a bug in an imple-
mentation but is a behavior allowed by the protocol specification. Consider the
scenario in Figure 9, where the client would like to reuse the connection, and the
server decides to close the connection while the second query from the client is
in flight. In this scenario, the second query arrives at the closing server, in which
case the server is either unable to receive the query from the socket, or unable
to send the response back, depending upon implementation. In either case, the
second query will be unanswered, and the client must retry, adding delay.

While this edge case can occur both when the server times out on an idle
connection and when the server does not support connection reuse at all and
closes the connection immediately after returning a DNS response, the latter is
especially problematic as it makes the race condition more likely. Indeed, with
connections closed after idling, a busy resolver interacting with a popular website
may never experience long enough idle time for the connection to close, and the
race described here would not arise. At the same time, the immediate unilateral
closing of the connection by ADNS will have a high chance to coincide with the
next client query, triggering the race.

Furthermore, one incident of this edge case may impact more than one query,
particularly since TCP, as a streaming protocol, can transmit multiple DNS
queries back-to-back, even within a single segment. Also, in the extreme case, a
query retried after encountering the race condition might be sent over another
active TCP connection to the ADNS – in fact, this may not be uncommon for
busy public resolvers and ADNSs serving large or multiple zones (such as those
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Category Number %

All established TCP connections can be reused 662 67.3%
None of the established TCP connections can be reused 258 26.2%
Mixed outcome of connection reuse 63 6.4%

All websites that established some TCP connections 983 100%

Table 4: TCP connection reuse by popular websites.

for CDNs). When the ADNS does not support connection reuse, this would lead
to repeated failed resolution attempts.

In order to investigate the prevalence of immediate closing by ADNS, we
consider handling of TCP connections by ADNS of (i) popular websites and
(ii) a number of CDNs, since their behavior affects all content providers that
subscribe to their service. We focus on ADNS that are likely to be busy in this
experiment because, as discussed above, they are more prone to trigger the race.

To assess this behavior, our Popular Websites and CDNs scans described in
Section 5 actually include two TCP queries over each connection, with the second
query sent one second after receiving the response to the first. In accordance with
the recommendation of RFC 7766, we expect connection reuse without explicitly
including the EDNS0 edns-tcp-keepalive option (see Section 6.1).
Popular Websites Among the 2835 name servers serving the popular websites,
53 servers do not accept TCP connections or fail to respond to the first DNS
query in a TCP connection – violating the DNS protocol. Of the remaining
servers, only 1861 (66.9%) were observed to respond to the second query at
least once. Table 4 breaks down the websites according to their connection reuse
behavior. The take-away point is that a third of ADNS servers close their TCP
connections immediately after sending a response, and a third of top-1K websites
are affected by this behavior as at least some of their ADNS are in this category.

This result shows that roughly a third of popular websites use name servers
that leave them highly exposed to the race condition, as some of their name
servers do not support connection reuse. Thus, DNS-over-TCP performance for
these websites may suffer.
Content Delivery Networks Turning to the ADNS serving content delivery
networks, the results are quite different. Out of 37 CDNs that support DNS-over-
TCP by at least some of their ADNS, 33 always support TCP connection reuse,
while only two-thirds of the popular websites do. However, two out of four CDN
providers that do not support TCP connection reuse are two major CDNs, which
we label CDN1 and CDN2. In fact, based on their name servers we probed, these
two CDNs behaved abnormally – albeit differently – in response to the resolver’s
attempt to reuse a connection. Neither explicitly closed the connection between
servicing the first query and the second. CDN1 did ACK the second query, but
then immediately initiated TCP connection closing. CDN2 ACK’ed the second
query as well, but did not send a DNS response before our scanner timed out
and initiated closing of the connection12.

12 We contacted both CDN1 and CDN2 about our findings. CDN1 acknowledged the
bug, and CDN2 did not respond.
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Overall, we observe that resolvers often follow RFC recommendations and
attempt to reuse a TCP connection for DNS-over-TCP queries. At the same time,
popular websites commonly close the connections immediately, and some major
CDNs, serving large portions of Web traffic, mishandle connection reuse. Either
case is problematic: immediate close can lead to a race condition and possible
performance degradation, and mishandling leads to a deterministic failure of
queries that reuse existing connections and a potentially significant disruption
in the DNS resolution process.

6.1 Deployment of edns-tcp-keepalive

RFC 7828 [39] allows clients and servers to negotiate the idle timeout of the cur-
rent TCP connection through an EDNS0 edns-tcp-keepalive option. The client
signals its desired TCP connection keepalive time to the server. Upon receipt,
the server can determine the value it wishes to use – either accepting the client’s
value, modifying it, or rejecting the persistent connection – and return its deci-
sion to the client. Support for this EDNS0 option can mitigate the TCP race con-
dition discussed above, especially if the server maintains the connection slightly
longer than as negotiated.

RFC 7828 is already supported by some widely deployed DNS software, in-
cluding BIND9. We assess the adoption of this mechanism by popular websites.
To this end, we rescan the authoritative servers of Majestic top-1K websites and
the 47 CDNs, including the edns-tcp-keepalive option in the first query to each
ADNS. The second query is still sent 1 second after receiving the response to
the first, and we set the keepalive to 2 seconds to be significantly larger than
our actual interval.

Unfortunately, we find support for the edns-tcp-keepalive option to be sparse.
Only 263 ADNS, serving 140 top-1K websites, negotiate the edns-tcp-keepalive
option with our scanner by appending their corresponding options in DNS re-
sponses. 244 (92.8%) out of 263 of these ADNS set this value to 30 seconds, which
is the default option value in BIND9, as well as the default waiting time before
it timeouts an idle TCP connection. Further, none of the CDN we study support
edns-tcp-keepalive, at least judged by the ADNS we probed. In addition, we find
that 36 ADNS servers in Popular Websites set the edns-tcp-keepalive option
in their responses but close the connection before the specified keepalive value,
resulting in a failed second query. This is obviously a non-compliant behavior.

We note that RFC 7828 does not address the situation where a resolver
explicitly requests a keepalive in its first query, the ADNS refuses, but before
the resolver receives the response with the refusal, another query arrives at the
resolver. An opportunistic resolver may pipeline the second query through the
current connection, and it will be left unanswered.

6.2 Addressing the Connection Reuse/Closing Race

We showed a high potential for the race between TCP connection reuse and
closing: many resolvers attempt to reuse a connection when it is available and
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many ADNSs close their connections right after sending a response. As long as
DNS interactions over TCP are rare, the few TCP queries that do occur are
unlikely to encounter another connection for reuse, and the above race will be
rarer still. Indeed, on a 5-minute packet trace of TCP queries at one of the
ADNS servers at the major CDN, resolvers reused only 19 of the 15436 observed
TCP connections. Still, we believe this issue needs to be addressed at the pro-
tocol level, before it can inflict practical harm, in the case the current activities
within the DNS community do lead to a shift towards connection-oriented DNS
communication. We stress that this issue extends beyond DNS-over-TCP, as
DNS-over-TLS [14] and DNS-over-QUIC [16] explicitly inherit connection reuse
policies from DNS-over-TCP. We believe the following simple modifications to
these policies would remove a possibility for the race.

– A resolver must not reuse a TCP connection unless an explicit ends-tcp-
keepalive negotiation has been completed, so that resolver would know for
how long the ADNS will maintain the connection.

– Similar to timed wait in TCP, An ADNS must retain an active connection
for 2MSL (maximum segment lifetimes) beyond the negotiated keepalive
duration. At the same time, the resolver must not reuse a connection beyond
the negotiated keepalive duration.

– As an optional optimization (a further study would be needed to decide if
this is worth the complications), a resolver may indicate its support for TCP
connection reuse in an EDNS0 option with its initial UDP query. An ADNS
that supports persistent connections may then indicate a default keepalive
value with its UDP TC response to such a query, allowing the client to
immediately learn the possibility of reusing the fallback connection. The
client, in the TCP fallback, can choose any keepalive value that does not
exceed the indicated default. The ADNS must accept this value during the
TCP interaction.

7 Ethical Considerations

We realize our scans may be confused for malicious activity by some scanned
networks, or be otherwise unwanted. We employ the following measures (repre-
senting to the best of our knowledge the best practices developed by the mea-
surement community) to minimize the affect to the Internet.

– We randomly shuffle the targets of our open resolver scan to avoid high
probing rates for a given network and triggering alerts for address scanning.

– We encode our contact information in the query strings used in our open
resolver measurement. The strings are formatted according to the following
pattern: “[keyword]-[target-IP]-email-[email-addr].our.zone”.

– All the scanner machines we used in this paper have publicly accessible
reverse DNS records, and the organizations of these machines can be looked
up in WHOIS database by their IP addresses.
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– We embed the same message in the email sent in our enterprise resolver
measurements as well.

– We maintain an exclusion list, which includes the IP addresses and the host-
names of the organizations who previously expressed their unwillingness to
join experiments. We exclude these IP addresses and hostnames from sub-
sequent measurements.

We received 14 complaints and inquiries (including one notification from
a public shared spam reporting service) from our enterprise email scans. We
responded to all of them quickly and excluded from our future experiments
those who expressed their unwillingness to participate. We did not receive any
complaints from our open resolver and RIPE Atlas scan.

8 Conclusion

In this paper, we assess the support of DNS-over-TCP, which has generated
significant interest due to its more secure nature. On the one hand, while we
find significantly higher support for TCP fallback by recursive resolvers than
prior studies, there is still a number of resolvers that are not capable of TCP
fallback. In particular, we assess 116,851 egress resolvers, responsible for 66.2%
of all queries to a major CDN’s ADNS platform, and find that 2.7%-4.8% of
them, contributing 1.1% to 4.4% of all queries from the resolvers we measured,
were unable to perform a TCP fallback when instructed by an ADNS. Thus,
ADNS operators deciding to force DNS-over-TCP usage via TCP fallback face
the risk of cutting off a non-negligible amount of their potential users.

On the other hand, we find a number of authoritative name servers, including
those serving some popular websites and several content delivery networks, to
not accept DNS queries over TCP. Indeed, around 3% of popular websites, and
over 5% of domains at large, are served by at least some ADNS failing to answer
queries over TCP, while 9 out of 47 CDNs we consider also exhibit this behavior.
Thus, a resolver operator choosing to switch to DNS-over-TCP today would
essentially make its users unable to reliably access these domains as well as all
content delivered by these CDNs.

Further, we uncover a race condition that may occur in DNS-over-TCP and
find that 32.4% of authoritative DNS servers serving Majestic top-1K popular
websites are vulnerable to this condition. Finally, we observe abnormal behavior
by two major CDNs in their DNS-over-TCP support.

We hope our findings will inform DNS operators who consider possible adop-
tion of DNS-over-TCP and help improve DNS-over-TCP support of the plat-
forms that have already adopted it.
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A Matching Algorithm

Algorithm 1 Split an array of DNS queries with a given (QNAME,QTYPE)
pair into an array of clusters (as defined in Section 4.3). Queries that cannot be
assigned to any cluster are added to a pseudo cluster.

Input: array queries ← all UDP and TCP queries with the given QNAME and
QTYPE pair in chronological order.

Input: float max time ← maximum delay between a UDP query and a TCP query
in TCP-fallback.

Output: array of arrays clusters ← each inner array is a cluster of UDP/TCP
queries. The last inner array is the pseudo cluster of UDP queries that cannot be
assigned to any cluster. The clusters appear in the outer array in chronological
order, i.e., the first query in a later cluster comes after the last query in an earlier
cluster. The queries within a cluster are also in chronological order.

1: procedure SplitIntoClusters(queries, max time)
2: clusters ← empty array
3: pseudo cluster ← empty array
4: cluster ← empty array
5: for each TCP query qtcp in queries in chronological order do
6: qsudp ← UDP queries in queries within max time before qtcp
7: if (qsudp ∩ cluster) = ∅ and cluster 6= ∅ then . cluster boundary
8: append cluster to clusters
9: cluster ← empty array

10: append each query q in qsudp to cluster unless q is already in cluster
11: append qtcp to cluster

12: if cluster is not empty then
13: append cluster to clusters
14: remove all queries in clusters from queries

15: for each qudp in queries do . All remaining queries in queries are UDP
16: add qudp to pseudo cluster

17: append pseudo cluster to clusters
18: return clusters

Algorithm 2 Label DNS queries according to whether they represent TCP-
fallback successes, failures, or indeterminate cases.

Input: map m← QNAME and QTYPE pair (”qpair”) as keys and arrays of chrono-
logically ordered queries with the corresponding qpair as values.

Input: float max time ← maximum delay between a UDP query and a TCP query
in TCP-fallback.

Output: map labels← queries as keys and labels of success, failure, or indeterminate
as values.
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1: labels← empty map
2: for qpair, queries in m do
3: clusters← SplitIntoClusters(queries, max time)
4: for each cluster in clusters excluding pseudo cluster do
5: used qSettcp ← empty set
6: indeterminate qSetudp ← empty set
7: pending qSetudp ← empty set
8: pending count qsudp ← 0
9: owners ← empty map (from UDP queries to tentatively matching TCP

queries)
10: for each query in cluster do
11: if query is a UDP query then . else statement in line 36
12: first qtcp ← the first TCP query in cluster following query and not

in used qSettcp
13: if first qtcp is null then
14: add query to indeterminate qSetudp
15: add queries in pending qSetudp to indeterminate qSetudp
16: pending count qsudp ← 0
17: else
18: add first qtcp to used qSettcp
19: owners[query]← first qtcp
20: if indeterminate qSetudp is empty then
21: add query to pending qSetudp
22: pending count qsudp + +
23: else
24: last qudp ← last query in indeterminate qSetudp
25: if time(first qtcp) − time(last qudp) > max time then
26: for each q in indeterminate qSetudp do
27: labels[q]← indeterminate
28: remove owners[q] from cluster
29: remove q from cluster

30: clear indeterminate qSetudp
31: used qSettcp ← {first qtcp}
32: pending qSetudp ← {query}
33: pending count qsudp ← 1
34: else
35: add query to indeterminate qSetudp

36: else . if statement in line 11
37: if pending count qsudp > 0 then . Can be 0 if cluster only has a

TCP query
38: pending count qsudp −−
39: if pending count qsudp = 0 then
40: for each q in pending qSetudp do
41: labels[q]← success

42: clear pending qSetudp

43: for each q in indeterminate qSetudp do
44: labels[q]← indeterminate

45: for each q in pseudo Qt cluster do
46: labels[q]← failure

47: return labels
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B CDN Targets Tested

Below we list the 47 CDNs we tested in this study, which includes 17 (shown in
bold font) out of 25 CDNs listed at CDN Planet (https://www.cdnplanet.com/,
accessed on Jan 2, 2022). The parenthetical information lists the domain name
employed and whether all, some, or none of the ADNS tested are TCP capable.
advancedhosterscdn(11799613.pix-cdn.org, all),

akamai(www.a1776.g1.akamai.net, all),

amazoncloudfront(www.d2qjncoblxi5md.cloudfront.net, all),

aryaka(hd.itrip.com.top.aads1.net, none), azion(18697b.ha.azioncdn.net, all),

belugacdn(www.cdn.famefocus.com.i.belugacdn.com, none),

bitgravity(www.pc-ap.bitgravity.com, all),

bunnycdn(www.planetedomo.b-cdn.net, some),

cachefly(www.vip1.g5.cachefly.net, none), cdn77(www.1650447009.rsc.cdn77.org, all),

cdnetworks(www.kisa.or.kr.cdngc.net, none),

cdnify(karnataka.a.cdnify.io, all), cdnsun(www.239827766.r.cdnsun.net, all),

cdnvideo(bfm.cdnvideo.ru, all),

cedexis(mobile.interflora.fr.fasterize.it.2-01-295f-000e.cdx.cedexis.net, all),

chinacache(hpcc-page.cncssr.chinacache.net, all),

chinanetcenter(www.v4q3iig12pcnka.wscloudcdn.com, none),

cloudflare(www.upra.org.cdn.cloudflare.net, all), cubecdn(mr.sp.cubecdn.net, all),

edgecast(www.cs109.adn.edgecastcdn.net, all),

facebook(scontent.xx.fbcdn.net, all), fastly(www.prod.seamless.map.fastlylb.net, all),

google(www.g0e1hw.feedproxy.ghs.google.com, all),

highwinds(www.cds.v2f8x7x9.hwcdn.net, all),

incapsula(www.hs2rptk.x.incapdns.net, all),

internap(www.6a2809e8d5.site.internapcdn.net, none),

keycdn(p-frpa00-v4.kxcdn.com, all),

leasewebcdn(www.5ad9c8cb35308834bf7d93d4e09de97e.lswcdn.net, all),

level3(www.vc.sporttube.com.c.footprint.net, none),

limelight(ualsharp.vo.llnwd.net, none),

maxcdn(www.creative-watch-new-pull.4ncfzftyhcv4rwo.netdna-cdn.com, all),

medianova(img-cimri.mncdn.com, none),

netlify(www.campusmanagement.netlify.com, all),

ngenix(www.cntraveller-st.cdn.ngenix.net, all),

nyiftw(www.nyi.nyiftw.net, all), onapp(316150366.r.worldcdn.net, all),

optimalcdn(www.cdn.optimalcdn.com, all),

quantil(www.oversea.dtwscache.speedcdns.com, none),

reflectednetworks(www.e-static.pornmd.com.sds.rncdn7.com, all),

rocketcdn(www.mediacdn.karnaval.com.streamprovider.net, all),

singularcdn(h2.singularcdn.net.br, all),

stackpath(www.adoramapix-8u9vvrwnlphhiqnu.stackpathdns.com, all),

swiftcdn(secure.aims.jns.swiftserve.com, all),

unicorncdn(xc3uk5s3rf.unicorncdn.net, all), wordpress(www.2.gravatar.com, all),

yottaa(www.a19af6306e7c013695900a3ba3fac80a.yottaa.net, all),

zenedge(104-225-137-39-tls12.zenedge.net, all)


