
Simultaneous Source Location

Konstantin Andreev1?, Charles Garrod1?, Bruce Maggs1, and Adam
Meyerson2?

1 Carnegie Mellon University, Pittsburgh, PA 15213
konst@cmu.edu, {charlie,bmm}@cs.cmu.edu

2 UCLA, 4732 Boelter Hall, Los Angeles, CA 90095
awm@cs.ucla.edu

Abstract. We consider the problem of Simultaneous Source Location –
selecting locations for sources in a capacitated graph such that a given
set of demands can be satisfied. We give an exact algorithm for trees and
show how this can be combined with a result of Räcke to give a solution
that exceeds edge capacities by at most O(log2 n log logn), where n is
the number of nodes. On graphs of bounded treewidth, we show the
problem is still NP-Hard, but we are able to give a PTAS with at most
O(1+ε) violation of the capacities, or a (k+1)-approximation with exact
capacities, where k is the treewidth and ε can be made arbitrarily small.

1 Introduction

Suppose we are given a capacitated network and we have various demands for
service within this network. We would like to select locations for servers in order
to satisfy this demand. Such problems arise naturally in a variety of scenarios.
One example of this would be the placement of web caches in the Internet, or
file servers in an intranet. Another example would be choosing the locations of
warehouses in a distribution network.

What does it mean for a server to “serve” a demand? Most previous work
has assumed that each server can service each demand for some cost (typically
this cost is linear in some underlying distance between server and demand) [20,
16, 3]. In some cases the servers have been considered to be capacitated (each
one can provide for only some number of demands) [17]. Still, the primary goal
can be considered as minimizing the aggregate distance of demands to servers.

In many natural applications, there is no meaningful notion of distance. Con-
sider serving a web page across the internet. The latency (travel time of a single
small packet) under low-congestion conditions tends not to be noticeable to the
end-users. The real difficulty here is the underlying capacity of the network. If
links become congested, then latency will increase and throughput will suffer. In
the case of a distribution network, there may be some relation (typically non-
linear) of costs to distance traveled. But we will definitely have to consider the

? The authors want to thank the Aladdin Center. This work was in part supported by
the NSF under grants CCR-0085982 and CCR-0122581

available throughput! The transportation network has capacities as well as costs,
and previous work (assuming costs only) tended to ignore this constraint except
at the warehouses themselves.

We consider the problem of Simultaneous Source Location (SSL) – selecting
locations for sources in a capacitated network in order to satisfy given demands.
Our goal is to minimize the number of sources used. Arata et al. previously gave
an exact algorithm for the Source Location problem, in the scenario where the
sources must be able to satisfy any single demand [2]. They also show that the
Source Location problem is NP-hard with arbitrary vertex costs. In our problem
we must satisfy all demands simultaneously (thus the name Simultaneous Source
Location). This is a better model of the natural problems described above. Si-
multaneous Source Location is easier than the Source Location problem with
arbitrary vertex costs explored by Arata et al. – our version of the problem can
be reduced to theirs using a high-cost super-sink that is satisfied if and only if
all other demands are met. However, we show that our version of the problem is
NP-Hard as well and describe various approximations for it.

Our results take several forms. We describe techniques for solving Simultane-
ous Source Location on a variety of simple graphs. We give an exact algorithm
on trees and an approximation for graphs of bounded treewidth. We observe
that, in contrast to many other NP-Hard problems (for example vertex cover),
Simultaneous Source Location is still NP-Hard even on graphs of treewidth two.
Using our algorithm for trees combined with a result of Räcke et al. [18, 6] and
later Harrelson et al. [11], we show how to solve source location on a general
undirected graph while overflowing the capacity by an O(log2 n log log n) factor.
Combining this with a hardness result for directed graphs allows us to show
that no tree decomposition similar to Räcke’s decomposition can be found in
the directed case. We show Simultaneous Source Location is at least hard on
general undirected graphs, but there remains a significant gap between the best
approximation algorithm and the known lower bound.

2 Problem Statement

An instance of Simultaneous Source Location (SSL) consists of a graph G =
(V,E) along with a capacity function u : E → R+ on the edges and a de-
mand function d : V → R+ on the vertices. We must select some subset of the
vertices S ⊆ V to act as sources. A source set is considered to be feasible if
there exists a flow originating from the nodes S that simultaneously supplies
demand dv to each node v ∈ V without violating the capacity constraints. This
is single-commodity flow – we can imagine adding a single “super-source” that is
connected to each node of S with an infinite capacity edge, and a single “super-
sink” that is connected to each node of V with an edge of capacity dv, and asking
whether the maximum flow equals the sum of the demands. Our goal is to select
such a source set S of the smallest size.

From the above description, it is clear that the problem is in NP. A source set
S can be checked for feasibility by simply solving a flow problem. Unfortunately,
finding the set S of minimum size is NP-Hard.

At times we consider various generalizations of this problem. For example,
we might have certain nodes in V that are not permitted to act as sources, or
have costs associated with making various nodes sources and seek to find a set S
of minimum cost. We will also consider simplifications of the problem that place
restrictions on the graph G (for example by bounding the treewidth).

3 Solving Simultaneous Source Location on Trees

Suppose our graph G = (V,E) is a tree. This special case allows us to solve SSL
exactly by dynamic programming. For each vertex v and number of sources i,
we define f(v, i) to be the amount of flow that must be sent to v by its parent in
order to satisfy all demands in the subtree of v, assuming this subtree contains i
sources. Our algorithm assumes that the tree is rooted and binary; in general we
can create an equivalent binary tree by creating virtual nodes and connecting
them by edges of infinite capacity, as shown in Figure 2. For convenience, for
each node v we define u(v) to be the capacity of the edge from v to its parent.

Our algorithm is described in Figure 1.

Algorithm BinaryTree(G, d)

1. Initialize f(v, i) =∞ for all v ∈ V and 0 ≤ i ≤ |V |
2. For each leaf vertex v ∈ V :

(a) Set f(v, 0) = dv.
(b) Set f(v, i) = −u(v) for all i ≥ 1.

3. Consider any vertex v with children v1, v2 for whom f has been computed:
(a) Loop over all values of i1 and i2 with 0 ≤ i1, i2 ≤ |V |.
(b) If f(v1, i1) ≤ u(v1) and f(v2, i2) ≤ u(v2) then:

i. Set f(v, i1 + i2) = min(f(v, i1 + i2),max(f(v1, i1)+f(v2, i2)+dv,−u(v))).
ii. Also set f(v, i1 + i2 + 1) = −u(v).

4. Continue until f is defined at all vertices.
5. Return the minimum k such that f(r, k) ≤ 0 where r is the root.

Fig. 1. Algorithm for SSL on a Binary Tree

Assuming that the above algorithm computes f(v, i) correctly for each vertex,
the correctness of the result is immediate. We need to show that f(v, i) correctly
represents the minimum amount of flow that must be sent from the parent of v
provided the number of sources in the subtree is i.

Theorem 1. The algorithm described produces an exact solution to the source
location problem on a binary tree.

Proof. The proof will be by induction. Our base case is at the leaves. Either a
leaf is a source or it is not. If the leaf v is a source, then it requires no flow from
its parent, and can send at most u(v) flow upwards along its edge. This yields
f(v, 1) = −u(v). On the other hand, if the leaf is not a source it requires flow dv
(its demand) from the parent, so f(v, 0) = dv. Of course, it might not be feasible
to send this amount of demand if dv > u(v).

We now consider any node v. Suppose we have correctly computed f(v1, i1)
and f(v2, i2) for all values i1, i2 for the children of node v. Suppose we would
like to compute f(v, i). There are i sources to be placed in this subtree. If v is
not a source itself, then all the sources are in the child trees. The total demand
sent into v will have to be enough to satisfy the demand dv and additionally to
satisfy any residual demand on the children. This means f(v, i) = min(max(dv+
f(v1, i1) + f(v2, i− i1),−u(v))) where the minimum is over choices of i1 and the
“max” term ensures that a child node cannot provide more flow to its parent
than the capacity of their connecting edge. This is exactly what will be computed
in the algorithm, in step 3b(i). Notice that if satisfying either child tree in this
way would require overflowing a capacity u(v1) or u(v2) then this allocation
of sources to subtrees is not feasible and so should not be considered; this is
resolved in step 3b. However, it is also possible that v is itself a source. In this
case, provided there is some choice of i1 ≤ i− 1 such that f(v1, i1) ≤ u(v1) and
f(v2, i− i1− 1) ≤ u(v2), we will be able to produce a solution. This solution can
send u(v) upwards since v itself is a source. This is dealt with in step 3b(ii). It
follows that the algorithm computes exactly the correct values f(v, i) and the
algorithm solves SSL.

Theorem 2. We can solve SSL in time O(n3) on a tree, even if some nodes
are disallowed as sources.

If our tree is non-binary we can replace any node with more than two children
by multiple nodes as shown in Figure 2. This increases the number of nodes by
at most a constant factor.

id1

id2 id3 id4 id5

�
�
�
c1

E
E
Ec2
S
S
S
c3

Z
Z
Z
ZZ
c4 →

id1id2
i0
id3 i0id4 id5

��c1 LL∞

�
�c2
L
L∞

��c3 LLc4

Fig. 2. By adding additional nodes linked by infinite capacity, we can convert any
non-binary tree into an equivalent binary tree by only doubling the number of nodes
in the tree.

We can also modify our algorithm to disallow certain nodes as sources. If a
leaf v cannot be a source, then we ignore step 2b and instead set f(v, i) = dv for
all i. If some higher node cannot be a source, then we remove step 3b(ii) for that
node (this step considers the case where v is a source). The correctness proof is
the same as before.

4 Using Räcke’s Result

In recent work, Harold Räcke showed that for any undirected graph, it is pos-
sible to construct a tree which approximately captures the flow properties of
the original graph[18]. Later work [6, 11] improved the result and described a
polynomial-time algorithm to construct such a tree. The most recent result is
stated more precisely in the following theorem:

Theorem 3. Given any capacitated, undirected graph G = (V,E, u : E → R+),
there exists a capacitated tree T = (VT , ET , u : ET → R+) with the following
properties:

1. The vertices of V are the leaves of T .
2. For any multicommodity flow F which is feasible on G, there exists a flow

of equal value between the corresponding leaves on T .
3. For any flow FT feasible between the leaves of T , there is a feasible 1

ρFT flow

on G for some ρ = O(log2 n log log n).

This gives us an approximation for the source location problem. We first
construct a tree T as described above. We then solve SSL on the tree, permitting
only the leaves to act as sources, using the algorithm of Section 3. We consider
using the sources we have obtained on the original graph. We know there exists
a flow FT on the tree from our selected source nodes which satisfies all the
demands. It follows that 1

ρFT is feasible on the graph. We conclude that if we

violate the capacities by a factor of ρ = O(log2 n log log n), then we have a
feasible solution to source location. On the other hand, any feasible solution on
the graph must also be feasible on the tree. This allows us to produce an exact
solution (in terms of the number of sources) while increasing the capacities by
O(log2 n log log n).

Theorem 4. We can produce an optimum (in terms of number of sources) so-
lution to SSL in polynomial time, if we permit O(log2 n log log n) stretch on the
capacities.

Our results also have interesting implications for directed graphs. Consider
the possibility of a Räcke-like representation of a directed graph by a tree, where
the capacity on an edge when routing “upwards” might differ from the “down-
wards” capacity. Suppose such a thing existed, and could be computed in poly-
nomial time, for some factor ρ. This would enable us to solve SSL exactly on
directed graphs, while exceeding capacities by a factor of ρ. But this is NP-Hard,
as will be shown in Section 6.2. Thus we have the following:

Theorem 5. No Räcke-like decomposition of a directed graph into an ρ-approximately
flow-conserving tree can be computed in polynomial time, for any value of ρ poly-
nomial in n.

Note that our hardness result is a computational hardness result and assumes
a tree-like structure decomposition. Azar et al. [5] have found an existential
hardness result which is true for any decomposition, but their bound is weaker:
O(
√
n).

5 Simultaneous Source Location with Bounded Treewidth

5.1 Defining Treewidth

The notion of treewidth was introduced by Robertson and Seymour [19]. Many
problems that are in general intractable become polynomial-time solvable when
restricted to graphs of bounded treewidth. Furthermore, many graphs arising
from natural applications have bounded treewidth. A good survey on the topic
is given by Bodlaender [7]. Here is one of the many equivalent definitions of
treewidth:

Definition 1. A graph G = (V,E) has treewidth k if there exists a tree τ =
(Vτ , Eτ) along with a mapping f : Vτ → 2V with the following properties:

1. For all α ∈ Vτ , |f(α)| ≤ k + 1.
2. For any (u, v) ∈ E there exists some α ∈ Vτ such that u, v ∈ f(α).
3. For any α, β, γ ∈ Vτ where β lies along the path from α to γ, if for some

x ∈ V we have x ∈ f(α) and x ∈ f(γ), then we must also have x ∈ f(β).

The above conditions essentially state that each tree vertex represents some
subset of at most k graph vertices, each edge in the graph has its endpoints
represented together in at least one of the tree vertices, and the set of tree
vertices which represent a single graph vertex must form a contiguous subtree.

We observe that it is possible to produce such a tree decomposition for a
graph of treewidth k in time linear in the number of nodes and vertices (but
exponential in k). Assuming k is constant, we are able to produce a tree de-
composition – and thereby implicitly detect graphs of constant treewidth – in
polynomial time. In general, however, computing the treewidth of an arbitrary
graph is NP-Hard.

5.2 Nice Decompositions

Bodlaender [8] also introduced the notion of a nice decomposition and proved
that any tree decomposition of a graph can be transformed into a nice decom-
position still of polynomial size. In a nice decomposition, each node α ∈ Vτ has
one of the following types:

– A leaf node α has no children, and |f(α)| = 1

– An add node α has one child β with f(α) = f(β)
⋃{v} for some node v ∈ V

– A subtract node α has one child β with f(α) = f(β) − {v} for some node
v ∈ f(β)

– A merge node α has two children β, γ with f(α) = f(β) = f(γ)

In addition, the nice decomposition has a root node ρ (which is a subtract node)
with f(ρ) empty.

5.3 Approximation for Graphs of Bounded Treewidth

Suppose we are given a graph G = (V,E) with treewidth k, for which we would
like to approximate the SSL problem. Our algorithm takes in some set of current
sources S along with a graph (V,E) and returns a set S ′ of sources which are
feasible for the given graph. Our algorithm for this problem appears in Figure 3.

Algorithm SL(S, V,E)

1. Check whether the source set S is feasible for (V,E); if so return S
2. If not, find sets X and BX that have the following properties:

(a) |BX | ≤ k + 1
(b) For all (x, y) ∈ E with x ∈ X and y ∈ V −X, we have x ∈ BX
(c) S

⋃
(V −X) is not a feasible source set

(d) S
⋃

(V −X)
⋃
BX is a feasible source set

3. Recursively solve SL(S
⋃
BX , (V −X)

⋃
BX , E)

Fig. 3. Algorithm for SSL with treewidth k

We claim that the set SR of returned sources has |SR| ≤ (k + 1)|S∗| where
|S∗| is the smallest feasible set of sources for (V,E) which includes the given set
S as a subset.

Lemma 1. Assuming we are always able to find sets X and BX with the prop-
erties described, algorithm SL is a (k+ 1)-approximation for the source location
problem.

The prove is done by induction on the number of sources required by the opti-
mum solution.

Of course, we still need to prove that we can always find the sets X,BX with
the required properties in polynomial time. In a general graph, such a pair of
sets might not even exist, but we will use the assumption of treewidth k to prove
existence and the ability to find the sets in polynomial time.

Lemma 2. If the current set of sources S is not feasible for the graph G =
(V,E) with treewidth k, then there exists a pair of sets X,BX with the required
properties; furthermore, such a pair of sets can be found in polynomial time.

Proof. We produce a tree decomposition (τ, f) of G. For each tree node α, we
define τα to be the subtree of τ rooted at α. We define f(τα) =

⋃
β∈τα f(β). For

each node α we will test whether S
⋃

(V − f(τα)) is a feasible set of sources. We
find node α such that S

⋃
(V −f(τα)) is infeasible, but such that S

⋃
(V −f(τβ))

is feasible for each child β of α. Note that such an α must exist; we simply
travel upwards from the each leaf of the tree until we find one. We now consider
returning X = f(τα) and BX = f(α). We will show that these sets satisfy the
required properties.

Since the graph has treewidth k we know |BX | = |f(α)| ≤ k+1. Consider any
(x, y) ∈ E with x ∈ X and y ∈ V −X. From the definition of treewidth, there
must exist some node β with x, y ∈ f(β). Since y is not in f(τα) we conclude
that β is not in τα. On the other hand, there is some node γ ∈ τα such that
x ∈ f(γ) (this follows from x ∈ X). The path from γ to β must pass through α,
so the treewidth definition implies x ∈ f(α) and therefore x ∈ BX as desired.
The selection of α guarantees that S

⋃
(V −X) is not a feasible source set. This

leaves only the fourth condition for us to prove.
We consider the children of α. A pair of them γ1, γ2 must have f(γ1)

⋂
f(γ2) ∈

f(α) because of the contiguity property of tree decomposition. Thus the sets of
nodes represented by the subtrees of the children can intersect only in the nodes
of BX = f(α). We know that for each child γ, the set of nodes S

⋃
(V − f(τγ))

would be feasible. It follows that we can cover all the demand of f(τγ) using
nodes of S and nodes external to the set. Since the children sets are disjoint
except for nodes which we have declared to be sources, the flows to satisfy each
child subtree are edge-disjoint; any flow from external nodes must also pass
through BX , and we conclude that we can cover f(τγ) using S

⋃
BX . It follows

that we can cover all of X using the sources S
⋃
BX , making S

⋃
BX

⋃
(V −X)

a feasible source set for the entire graph.

Theorem 6. Algorithm SL produces a k+ 1-approximation to the SSL problem
on a graph of treewidth k.

5.4 Bounded Treewidth with Capacity Stretch

We will describe an exact algorithm for the SSL problem on graphs of bounded
treewidth. The running time of this algorithm will be exponential in the treewidth,
and also depends polynomially on the maximum edge capacity. In the general
case where the capacities may be large, we will use the technique of Appendix A
to obtain a solution with 1 + ε stretch on the edge capacities.

Suppose we have found a nice tree decomposition (τ, f). We will construct a
set of vectors of dimension k + 3. Each vector has the following form:

(α, i, f1, f2, ..., fk+1)

Here α ∈ Vτ , 0 ≤ i ≤ |V |, and the fi are feasible flow values (we assume
these are from a polynomially-bounded range of integers). Let Sα = f(τα)−f(α)
represent the nodes represented by the subtree rooted at α minus the nodes of

its boundary (the nodes of f(α) itself). A feasible vector represents the excess
flow needed to be sent directly from the nodes of f(α) to Sα to satisfy all the
demand in Sα if Sα contains i sources.

We observe that if k is a constant and flow is polynomially-bounded, then
the number of possible vectors is polynomial in size. We will determine which
such vectors are feasible in polynomial time, then use this to solve SSL. Our
algorithm is as follows:

1. Start with the empty set of feasible vectors.
2. Consider each node α from the bottom up:

– If α is a leaf, then add vector (α, 0, 0).
– If α is an add node with child β, then for each feasible vector for β, copy

that vector for α, placing flow 0 in the new position corresponding to
the additional node in f(α)− f(β).

– If α is a merge node with children β, γ then for each pair of feasible
vectors xβ , xγ for the children, create a vector for α: xα = xβ + xγ
(adding the number of sources and the flows while changing the choice
of node from Vτ to α).

– If α is a subtract node with child β, then consider each feasible vector
xβ for the child. Let the subtracted node be b ∈ f(β)− f(α). This node
requires some flow rb which is the sum of the demand db and the flow
value for b in xβ . We consider all feasible allocations of flow F (a) to
nodes a ∈ f(α) such that |F (a)| ≤ u(b, a) and

∑
a∈f(α) F (a) ≥ rb. For

each such allocation we construct a vector xα whose number of sources
is equal to xβ and with flow value at a equal to the flow value in xβ plus
F (a). This corresponds to refusing to make b a source. We now consider
making b a source. This corresponds to creating a vector xα with one
more source than the vector xβ . We set the flow value for a node a ∈ f(α)
to be the flow value in xβ minus u(b, a).

3. Now consider all vectors for the root node ρ. These are simply pairs (ρ, i)
since f(ρ) is empty. We return the minimum value of i such that (ρ, i) is in
the feasible set.

Theorem 7. If there are F possible flow values, the above BTW algorithm runs
in time O(kn2NF 2k+2) where n = |V | and N = |Vτ | and k is the treewidth.

This running time is polynomial assuming that F is polynomial and k is a
constant. If the number of possible flow values is not polynomial, we can use the
result of Appendix A to effectively reduce the number of flow values. This will
cause us to exceed the graph capacities by a factor of 1 + ε.

5.5 Lower Bound for Treewidth 2 Graphs

We show that the SSL problem is NP-Hard even on graphs with treewidth two.

Theorem 8. SSL is NP-Hard even on graphs with treewidth two.

Proof. The proof is by reduction from subset sum. We are given a set of numbers
{x1, x2, . . . , xn}, and would like to determine whether some subset of the given
inputs sums to A. Suppose the sum of all the numbers is S. We construct an SSL
instance with 2n+ 2 nodes. Each number will be represented by a pair of nodes
of demand S with an edge of capacity S between them. Our example is a four
level graph. On the first level we have a node of demand A which connects to one
side of every pair of nodes that represent a number. The capacity on the edge
between the A node and the number xi node is exactly xi. The number nodes
from the second level are paired with the nodes from level 3. All nodes from level
3 are connected to a single node at level 4 with an edge of capacity corresponding
to their number. The node at level 4 has demand S − A. This graph is shown
in Figure 4. If there exists a subset of the numbers summing to A, then we
can place sources on the lefthand node for each of the numbers in that subset
and the righthand node for all the other numbers; it is straightforward to see
that this is a feasible SSL making use of n sources. On the other hand, consider
a SSL solution. We must select one of the two nodes for each of the numbers
(otherwise there is not enough capacity to satisfy them). It follows that the SSL
uses at least n sources. If exactly n sources are used, then the result corresponds
to a subset sum solution. It follows that solving source location exactly on this
graph will solve subset sum. The graph given has treewidth two; we can see this
because if we remove the node of demand A, the remaining graph is a tree. We
take the (treewidth one) tree decomposition and add the node of demand A to
the subset f(α) for all α. This is a tree decomposition of width two.

����S ����SS

...
����S ����SS

����S ����SS

����A ����S-AZ
Z
Z
Z
ZZ

xn

((((
((x2

�
�
�
�
��x1

�
�

�
�

��

xn

hhhh
hhx2

Z
Z

Z
Z

ZZx1

Fig. 4. Simultaneous Source Location is NP-Hard even on graphs of treewidth two.
To satisfy each demand in this graph using only n sources we must find a partition of
{x1, x2, . . . , xn} whose sums are A and S −A.

6 Simultaneous Source Location on Directed Graphs

6.1 Greedy O(logn) Approximation

We are given a directed graph G = (V,E) for which we would like to approx-
imate the SSL problem. We propose a simple greedy algorithm. We start with

no sources and no demand satisfied. We add the source which maximizes the in-
crease in the total satisfied demand. We repeat this until all demand is satisfied.

Theorem 9. The greedy algorithm gives an O(log n) approximation on the num-
ber of sources with no violation of the capacities.

Proof. Suppose that the optimum solution uses t sources. At some point in time,
suppose our current set of sources can cover demand d and the total demand
in the graph is D. Consider the residual graph after adding the flows from our
sources to satisfy demand d. The residual demand is D − d, and if we were to
add all the optimum sources we would be able to satisfy the full residual demand
(note that this is essentially single commodity flow since sources are equivalent).
It follows that we can add one source to the residual graph to satisfy demand
D−d
t . We apply the standard greedy analysis for problems like SETCOV ER to

show that the full demand will be covered in O(logD) steps. Assuming that the
maximum and minimum demand are within a polynomial factor of one another,
we are done. Otherwise, we can apply scaling arguments of Appendix A to give
the desired O(log n) factor.

6.2 Lower Bound for Directed Graphs

We show that O(log n) is the best approximation factor we can expect to obtain
for the directed SSL problem in polynomial time, due to a reduction from set
cover.

Theorem 10. We cannot approximate directed SSL to better than O(log n) in
the worst case, unless NP ⊂ DTIME(nO(log logn)).

Proof. Suppose we would like to solve a set cover instance. We construct a graph
with one node for each set, one node for each element, and one additional node.
The additional node is connected by a directed edge of capacity one to each of
the sets. Each set is connected by a directed edge of capacity N , where N is
more than the sum of the number of sets and elements, to each of its elements.
The additional node has demand one, each set has demand one, each element
has demand N . We solve the SSL problem to some approximation factor ρ on
this graph. We first observe that no element should be selected as a source;
otherwise we could simply select one of the sets containing that element as a
source instead. Second, we observe that the additional node will be selected as
a source. We have a solution consisting of ρt nodes, where t is the optimum.
Consider the set nodes that we selected as sources. Every element node must be
connected to one of these set nodes in order for its demand to be satisfied (note
N is greater than the number of sets). It follows that we have a set cover of
size ρt− 1. Similarly, observe that any set cover, plus the additional node, forms
a feasible SSL solution. So we have obtained a ρt−1

t−1 ≥ ρ approximation to set
cover. This is unlikely for ρ smaller than log n due to the results of Feige [10].

We observe that even if we are allowed to violate edge capacities by some
large factor (say less than N), the reduction from set cover still holds.

7 Lower Bound for Undirected Graphs

We show that SSL does not have a polynomial-time approximation scheme via
an approximation-preserving reduction from vertex cover.

Assume we can approximate SSL on any graph to a constant α. Now for an
instance of Vertex Cover on a graph G=(V,E), we will setup an instance of SSL.
For every vertex the demand is equal to its degree and all edge capacities are
unit.

The main observation is that a vertex cover set and a source location set
on this graph are equivalent. It is easy to see that a feasible vertex cover is a
feasible source location: for every edge at least one end is in the vertex cover
and therefore a source. Thus every vertex will have its demand satisfied. On the
other hand a source location set can’t have a two hop path over a non source
vertex, because this vertex will be starved. Hence every edge has at least one end
in the source location set, i.e. the source location set is a feasible vertex cover.

Using the assumption we can approximate the SSL problem on G. Therefore
we find a set S⊂V which covers all edges in E and is within α of the optimal
Vertex Cover. However as Hastad [12] showed Vertex Cover is inapproximate if
α < 7/6 (although an approximation factor better than 2 would be a surprising
improvement on existing vertex cover results).

Theorem 11. Simultaneous Source Location is 1.36067−ε hard on general undi-
rected graphs if edge capacities are not violated.

The proof follows from the reduction above and the recent hardness results
by Dinur and Safra [9].

8 Conclusions

We define the Simultaneous Source Location problem and solve the problem
exactly on trees. We present a (1+ε) violation of the capacities PTAS for graphs
of bounded treewidth. On general graphs we find a solution with exact number of
sources which can exceed the capacities by at most a factor of O(log2 n log log n).
We show a O(log n) factor approximation on the number of sources with no
violation of the capacities for general directed graphs. We believe that many
interesting applications of this problem involve graphs of low treewidth; many
of the connectivity graphs of real networks have been observed to have low tree
width [8].

The main open problem is the approximability of SSL on undirected graphs of
large treewidth. No constant approximation on the number of sources is known,
even if we allow constant violation of the capacities. The only lower bound on
approximability with exact capacities is 1.36067 − ε. An approximation factor
asymptotically better than 2 would be a surprising improvement on existing
vertex cover results [15]. One can also consider adding costs on the edges and/or
the vertices.

References

1. W. A. Aiello, F. T. Leighton, B. M. Maggs, M. Newman. Fast algorithms for
bit-serial routing on a hypercube Mathematical Systems Theory, 1991

2. K. Arata, S. Iwata, K. Makino, and S. Fujishige. Locating sources to meet flow
demands in undirected networks. Journal of Algorithms, 42, 2002.

3. V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala. Local
search heuristics for k-median and facility location problems. Proceedings of the
33rd ACM Symposium on Theory of Computing, 2001.

4. Y. Aumann, Y. Rabani. An O(log k) approximate mincut max-flow theorem and
approximation algorithms SIAM Journal of Computing, 27(1), 1998

5. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke. Optimal oblivious routing
in polynomial time. Proc. 35th Annual ACM Symposium on Theory of Computing,
2003.

6. M. Bienkowski, M. Korzeniowski, and H. Räcke. A practical algorithm for con-
structing oblivious routing schemes. Fifteenth ACM Symposium on Parallelism in
Algorithms and Architectures, 2003.

7. H. L. Bodlaender. Treewidth: Algorithmic Techniques and Results. Proceedings
22nd International Symposium on Mathematical Foundations of Computer Science,
1997

8. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Compututer Science, 209(1), 1998.

9. I. Dinur and S. Safra. On the importance of being biased. Proceedings of the 34rd
ACM Symposium on Theory of Computing, 2002.

10. U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
1995.

11. C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to
minimize congestion. Fifteenth ACM Symposium on Parallelism in Algorithms and
Architectures, 2003.

12. J. Hastad. Some optimal inapproximability results. Proceedings 29th Ann. ACM
Symp. on Theory of Computing, ACM, 1-10, 1997

13. P. Klein, S. A. Plotkin, S. Rao. Excluded minors, network decomposition, and
multicommodity flow. Proceedings of the 25th ACM Symp. on Theory of Computing,
1993

14. T. Leighton, S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms Pro-
ceedings of the 29th Symp. on Foundations of Computer Science, 1988

15. S. Khot and O. Regev. Vertex cover might be hard to approximate within 2 − ε.
Proceedings of the 17th IEEE Conference on Computational Complexity, 2002.

16. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric
facility location problems. APPROX, 2002.

17. M. Pál, É Tardos, and T. Wexler. Facility location with nonuniform hard capacities.
Proceedings of the 42nd IEEE Symposium on the Foundations of Computer Science,
2001.

18. H. Räcke. Minimizing congestion in general networks. IEEE Symposium on Foun-
dations of Computer Science, 2002.

19. N. Robertson, P. D. Seymour. Graph Minors II. Algorithmic aspects of tree width
Journal of Algorithms 7, 1986.

20. D. Shmoys, É Tardos, and K. Aardal. Approximation algorithms for facility loca-
tion problems. Proceedings of the 29th ACM Symposium on Theory of Computing,
1997.

A Dealing with Super-Polynomial Capacities

Some of our analyses assume that there are only a polynomial number of capac-
ities. Here we present a method to extend those analyses to when the capacities
are super-polynomial, allowing us to satisfy demands while exceeding capacities
by a 1 + ε factor in those cases.

When capacities are super-polynomial, we express the flow and capacity of
each edge as αF i for some value of i (which might be different from edge to edge)
and some value of α which is between F and F 2. This can be done by rounding
every flow up to the nearest value. Once this is done, we might no longer have a
feasible flow. The new capacities (which might be larger than the old capacities
by a 1 + 1

F factor) will not be exceeded. However, flow conservation may no
longer hold. Consider any node. If the original inflow was f then the outflow was
f also. But it is possible that after this rounding upwards, the inflow is still f
and the outflow has increased to f(1+ 1

F). We consider such a flow to be feasible.
This means that a node might effectively “generate” some amount of flow, but
this amount is at most 1

F of the inflow.
Now consider any graph with a feasible flow under the representation de-

scribed above. We would like to transform this into a real flow. If we consider
splitting the “generated” flow equally among outgoing edges, we will see that
as flow passes through a node the percentage of “real” flow might decrease by a
factor of F

F+1 . In the worst case, some edge might have a fraction of “real” flow

equal to (F
F+1)n ≥ 1− n

F .
We let F = n

ε . It follows that we can satisfy at least 1 − ε of each demand
while exceeding capacities by a factor of 1 + ε

n . Since we can scale the flows and
capacities, this means we can satisfy the demands while exceeding capacities by
1 + ε factor.

This is useful in bounding the running time and approximation factor of
various techniques for approximating SSL.

