
System to Identify and Elide Superfluous JavaScript
Code for Faster Webpage Loads

Utkarsh Goel
Akamai Technologies, Inc.

ugoel@akamai.com

Moritz Steiner
Akamai Technologies, Inc.
mosteine@akamai.com

ABSTRACT
Many websites import large JavaScript (JS) libraries to
customize and enhance user experiences. Our data shows
that many JS libraries are only partially utilized during a
page load, and therefore, contain superfluous code that is
never executed. Many top-ranked websites contain up to
hundreds of kilobytes of compressed superfluous code and a
JS resource on a median page contains 31% superfluous code.
Superfluous JS code inflates the page weight, and thereby,
the time to download, parse, and compile a JS resource. It
is therefore important to monitor the usage and optimize
the payload of JS resources to improve Web performance.
However, given that the webpage design and functionality
could depend on a user’s preferences or device, among
many other factors, actively loading webpages in controlled
environments cannot cover all possible conditions in which
webpage content and functionality changes.

In this paper, we show that passive measurement
techniques, such as real user monitoring systems (RUM),
that monitor the performance of real user page loads under
different conditions can be leveraged to identify superfluous
code. Using a custom man-in-the-middle proxy (similar to
a content delivery network’s proxy server), we designed a
systematic approach for website developers that relies on
pages loaded by real users to passively identify superfluous
code on JS resources. We then elide any superfluous code
from JS resources before subsequent page load requests. Our
data shows that eliding superfluous JS code improves the
median page load time by 5% and by at least 10% for pages
in the long tail. Through results presented in this paper, we
motivate for the need for rigorous monitoring of the usage
of JS resources under different real world conditions, with
the goal to improve Web performance.

1 INTRODUCTION
To generate aesthetically appealing Web experiences and
to monitor page’s performance, many websites bundle
JavaScript (JS) libraries as a development and deployment
convenience [39]. JS bundles offer a large set of cross-
browser functionality, for example via JS Polyfills, which
when imported may remain under-utilized across difference
webpages [12]. As such, a JS bundle that contains large

0 20 40 60 80 100
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Anonymous Function Count (%)
Fr

ac
tio

n 
of

 J
S

 R
es

ou
rc

es

Figure 1: CDF of anonymous function count.

amounts of superfluous code can slow down the page
load process because not only does the superfluous JS
code increase the page weight, it also increases the time
to download, parse, and compile the JS resource before it
can be executed [37]. We perform a measurement study
to investigate the presence of superfluous code in 100+
top-ranked websites. Our data shows that websites contain
up to hundreds of kilobytes of compressed JS payload that
never executes during a page load. Additionally, we observe
that the median JS resource contains 31% superfluous code.

Given this large amounts of superfluous code on websites,
we argue that website developers should perform rigorous
monitoring of their JS resources to understand usage based
on real user page loads, with the goal of eliding superfluous
code before delivering to clients. Active experiments could
be used to perform static analysis of JS resources via
Chrome’s Coverage API [20], however, experiments per-
formed using the Coverage API will have several limitations.
First, Web developers will need to load pages in controlled
environments and therefore cannot trigger all website
behaviors based on user’s personal preferences, device’s
capabilities, screen size, phone model, geography, network
quality, among many other factors [4, 10, 31]. As a result, the
Coverage API cannot be used to capture JS usage under all
real world conditions under which a website behavior may
change [32]. Second, the Coverage API does not capture the
usage of anonymous function declarations in JS resources



and reports all anonymous functions as superfluous. As
shown in Figure 1, the median JS resource contains 88%
anonymous function declarations. In fact, all function decla-
rations in top 20% JS resources are anonymous. As a result JS
usage measurements performed using the Coverage API will
be inaccurate. Therefore, the Coverage API under-estimates
the JS usage. And third, the data captured by the Coverage
API is not exposed to JS and therefore, RUM-based systems
cannot collect data about the usage of JS resources.
In this paper, we show that passive measurement

techniques are better suited to estimate the usage of
JS resources during page loads, similarly to how Real
User Monitoring (RUM) systems capture various Web
performance metrics [5, 7]. A passive monitoring solution
for JS resources can also be employed by website owners
or content delivery networks [11]. We make the following
contributions in this paper.

Proxy Server: We designed an HTTP(S) proxy, similarly to
CDN servers, that not only terminates TCP/TLS connections
and serves HTTP(S) requests, but can also authoritatively
modify JS resources on behalf of the website owner [36].
For every requested JS resource, the proxy rewrites the
resource payload modifying each function declaration
so that the added snippet executes when the function
containing it executes during the page load. After page load,
the modified JS resource sends back information containing
which functions executed during the page load, which is
then used to elide superfluous functions. To maintain page
functionality in case an elided function needs to execute, the
proxy adds logic to synchronously download and execute
the elided function body without causing page errors.
Measurements: To the best of our knowledge, there is cur-
rently no known best-practice on how to reliably measure JS
usage via passive measurement techniques. Our paper is the
first academic measurement effort that investigates JS usage
on 100+ top-ranked e-commerce, banks, auto manufacturers,
media, and entertainment websites, randomly chosen from
Alexa top 1000 websites. We investigate JS usage on various
first and third party resources, where we classify a resource
as third party when it is not served by the first party infras-
tructure [27]. We investigate differences in JS usage across
two types of mobile devices: a slow, small sized screen mobile
device (Moto G) and a relatively faster, bigger sized screen
mobile device (Moto G4). Finally, we perform experiments to
learn the superfluous components of JS resources loaded on
different webpages and measure the Web performance post
superfluous JS elision. Note that since mobile devices gener-
ally have slower CPUs than laptops and desktop machines,
and since JS operations during page load happen on device’s
CPU, the impact of superfluous JS on Web performance is
higher on slower devices [37, 41, 43]. Therefore, we tailor our

experiments to investigate the JS usage and performance im-
provements from elision on pages loaded on mobile devices.
Inferences Drawn: Using our custom proxy server and
mobile devices on the WebPageTest platform for loading
webpages [15], we make the following observations. First,
many top-ranked websites contain up to hundreds of
kilobytes of compressed superfluous JS code, which accounts
to up to 38% of total first party JS and up to 71% of total third
party JS on some pages. Second, the median JS resource on
a given webpage is 31% superfluous. Moreover, 48% of the
median JS library in the JQuery framework was found to
be superfluous for the pages in our dataset – suggesting that
developers import the entire third party library but only
ever use it partially. Third, for 13% of JS libraries loaded
during our experiments, the set of executed JS functions
varied based on the device’s screen size and the User-Agent
header passed in the HTTP requests. And fourth, by eliding
first-party superfluous JS, the median page load time
improves by 5% and at least 20% for pages in the long tail.
The rest of the paper is organized as follows. Section 2

describes our experimental methodology to identify and
elide superfluous JS code. In Sections 3, we discuss our
results. In Section 5, we discuss related work. In Section 6, we
discuss challenges with identifying and eliding superfluous
CSS rules. Finally, we conclude and provide future directions
in Section 7.

2 EXPERIMENTAL METHODOLOGY
The identification and elision of superfluous JS code works
in two phases. The first phase is the learning phase, where
we collect data as to whether or not a function inside a
JavaScript file executes during the page load. In particular,
when the proxy serves a JS resource to the client, it makes
several changes in the background for future requests of the
same resource. First, the proxy modifies the JS resource to
declare an array at the top of the JS resource. It then parses
the resource to build an abstract syntax tree (AST), using
which it learns the beginning and the end byte ranges of
every function declaration in the JS resource [38]. The proxy
then iterates over function declarations, generates a unique
identifier for each declaration, and adds a JS snippet (as
the first statement in the declaration). This snippet inserts
the function identifier to the array declared at the top of
JS resource. Note that this snippet executes whenever the
function containing it executes during the page load.
Finally, the proxy adds another JS snippet at the top of

the JS resource that sends to our Web server the contents
of the globally declared array after the page has loaded.
Website developers often wait for different page events, such
as window.onLoad, to fire before they execute additional
JS code for downloading functionality and content for the



0 20 40 60 80 100

0.
85

0.
90

0.
95

1.
00

New Functions Detected Count (%)

Fr
ac

tio
n 

of
 J

S
 R

es
ou

rc
es

Figure 2: CDF of newly detected function count.

page [9]. Therefore, in our experiments the above snippet exe-
cutes when the browser triggers the window.loadEventEnd
event – indicating that all listeners, such as setTimeouts or
Promises, attached to the window.onLoad event have fin-
ished executing [14]. At window.loadEventEnd, the array
containing the identifiers of all executed functions are sent to
our server. When our server receives the beacon containing
identifiers of all executed functions, the proxy transitions
into the second phase to elide superfluous functions.

In the second phase, every function whose identifier was
not present in the beacon is elided. However, it is possible
that certain JS functions execute under specific conditions
not captured during the phase one. As a result, if such func-
tions are deleted and are needed to execute during the page
load, the webpage functionality will break. Therefore, instead
of deleting the entire function declaration, the proxy replaces
the body of each superfluous function with a stub that when
executed, issues a synchronous XMLHttpRequest (XHR)
request to download the elided function body, followed by
running the JS eval method on the downloaded function
body and providing the method the appropriate context and
function arguments [8, 18]. When eliding superfluous func-
tions, the proxy copies the function body into a separate file
and its HTTP path on the server is hard-coded in the XHR
request. Note that the stub makes XHR requests in synchro-
nous mode to strictly preserve the function execution order,
in case multiple elided functions are called. However, to
ensure that we never elide a potentially needed function, the
learning phase must be conservatively employed to identify
JS functions that execute based under different scenarios.
Note that since we tailor our solution for website developers
and CDN vendors and since both of them can only author-
itatively modify JS resources that they serve, in the second
phase, we elide superfluous JS from first party resources only.

Client Setup: To measure the performance differences in
page loads with and without superfluous JS code, we utilize

the WebPageTest (WPT) platform and its client devices to
load 100+webpages [15].WPT has a fleet of 20Moto G and 20
Moto G4 mobile devices located in Dulles, VA, USA. Moto G
is small screen sized mobile device with a 1.2 GHz quad-core
CPU. Moto G4 is bigger screen sized mobile device with
a 1.5GHz octa-core CPU. We utilized both of these devices
to load pages using the Chrome browser (v69) installed on
these devices and to understand the JS usage that occur from
small and large screen sized devices, as well as understand
the impact of eliding superfluous JS on Web performance for
page loaded over devices with different CPU clock speed. We
deploy our proxy on an AWS EC2 instance in the same geo-
graphic region as the chosen WPT devices, to obtain similar
effect as how clients connect to nearby CDN servers [36].
Next, we want the client devices to load webpage

resources from our proxy, instead of website owners’
servers, so as to modify JS resources. Therefore, when
running experiments, we provide Chromium browser
the --host-resolver-rules flag that bypasses the DNS
lookup process and uses the provided IP address to connect
and download resources [6]. In our experiments, this
flag looks like MAP * <Proxy IP>, where * indicates all
hostnames. Since in our experiments, our proxy is not
authoritative for the requested webpage resources, for
resources requested over TLS connections, the proxy
returns a self-signed certificate. We configure the Chromium
browser to ignore any certificate errors by passing the
--ignore-certificate-errors flag [13]. Finally, to pre-
vent resource loading from browser cache and affecting mea-
surement data, we pass the --incognito flag to Chromium
so that the pages are loaded in the incognito mode.

Finally, we begin loading webpages in the learning phase
to identify superfluous JS functions. We use the WPT API
to configure mobile devices and Chromium browser to load
100+ webpages, one at a time, for five times each. In the learn-
ing phase, we load each page five times to detect any function
execution that is triggered on a sampling basis, for example,
due to A/B testing of new features. Figure 2 shows the dis-
tribution of the percentage of functions triggered randomly
across five page loads. As shown in Figure 2, we observe
that new function executions were detected in repetitive
page loads for about 12% of JS resources across all webpages.
Note that since we load pages in Chrome’s incognito

mode, each time the browser finishes loading the page
and quits the browser process, all cached data, including
DNS entries, TCP/TLS connections, HTTP payload, is
deleted. Also note that loading the same page multiple times
increases the likelihood of executing functions that may run
on a sampling basis – thus triggering different code paths.
When the proxy receives HTTP requests, it forwards the
request to the website owner’s servers and stores a copy of
the resource locally. For any JS resource, the proxy modifies



each function declaration (as described earlier), stores a local
copy of the modified JS resource, and sends it back to the
client to trigger the learning phase for that JS resource. Upon
execution of this JS resource, the proxy receives a beacon
containing function identifiers of all executed functions. The
proxy stores identifiers of all executed functions on a per
JS resources basis in a local database. When new function
identifiers are found in a beacon from the five page loads, the
proxy appends all new function identifiers to the database.
Once the learning phase completes for a webpage, the

proxy retrieves the list of executed function identifiers for
each JS resource and elides all functions whose identifiers
did not appear in the list. The proxy then stores a copy of the
elided JS resource locally. At the end of learning phase, the
proxy has a copy of all original resources requested during
the page load, a copy of the JS resources with added JS
snippets, and a copy of JS resources with elided superfluous
functions. Storing a local copy allows proxy to serve HTTP
requests without forwarding requests to the website owner’s
server – thus preventing results to be not impacted by any
fluctuations in the network performance between the proxy
and the website owner’s server. After a JS resource is elided,
the proxy stores several characteristics about the JS resource
in the database, such as the number of functions (total and
elided), number of anonymous functions (total and elided),
JS bytes (total and elided).

For each webpage for which we elide superfluous JS code,
before starting performance measurements, we compared
the webpage’s visual and functional correctness with that
of the original webpage. Specifically, we compared for the
error logs printed in the browser console, the number of
requests, and manually checked for visual similarity. In all
cases, we found the two versions of the webpage same in
visual appearance and functionality.

3 RESULTS
Now that the proxy has learned which part of the JS code is
superfluous and has a copy of original and elided JS resources
available to serve, we now load webpages to measure the
performance differences with and without superfluous JS
elision. We iterate over our 100+ webpage list to load each
page 20 times in the original mode and 20 times in the
elided mode. The original mode refers to a setup where
the proxy sends original resources as retrieved from website
owner’s servers. The elided mode refers to a setup where
the proxy sends original resources, except for JS resources
where the proxy sends a copy with elided superfluous code.

In Figure 3, we show the amount of first party superfluous
JS code on 100+ webpages. From the figure we observe that
16% of first party JS code is superfluous on the median page
and up to 38% on other pages. Note that this superfluous

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Superfluous First Party JavaScript (%)

Fr
ac

tio
n 

of
 P

ag
es

Figure 3: CDF of superfluous JS (%) on webpages.

JS code accounts to up to 700 KiB of compressed JS payload,
which could decompress to over a megabyte of JS code.
Before the browser can execute even a non-superfluous
portion of the JS resource, all superfluous JS payload must
also be downloaded, decompressed, and parsed – impacting
the page’s performance. We perform similar investigation
for third party JS resources and found that for the median
page 16% of third party JS is superfluous; however, given
many website developers import many JS frameworks to
introduce additional functionality on the page, third party
JS resources could be up to 71% superfluous on some pages.
While website developers are not authoritative to make
any changes to third party JS resources, however, if such
resources could be arranged to be served from their first
party infrastructure, superfluous code in third party JS
resources could also be identified and thus elided.

Next, we investigate the number of superfluous functions
on a per-resource basis, in over 2500 JS resources loaded
across 100+ webpages. Figure 4 shows that the median JS
resource has a total of 80 function declarations, out of which
25 (31%) of declarations are superfluous. The JS resource at
the 80th percentile contains at least 512 function declarations,
out of which at least 140 (27%) declarations are superfluous.
Exploring the collected data further (but not shown on the
graph), we found that the median library in the JQuery
framework is 48% superfluous. Similarly, we found that in
other frameworks, such as Adobe Tag Manager and Clicktale,
the median library is 16% and 29% superfluous, respectively.
Based on observations, we explore the opportunity of

optimizing JS resources by eliding superfluous code. Since
mobile devices have slower CPUs than laptops and desktops,
and since JS execution happens on the device’s CPU, we mea-
sure the webpage performance with and without superfluous
JS only on mobile devices. In Figure 5, we show distributions
of median percentage improvements in the page load
time (PLT) metric, as observed when loading pages on a



1 5 10 50 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Function Declaration Count

Fr
ac

tio
n 

of
 J

S
 R

es
ou

rc
es

Total
Superfluous

Figure 4: CDF of total and superfluous functions.

fleet of Moto G and Moto G4 mobile devices. Note that we
refer PLT as the time since the start of the navigation until
the browser triggers the window.onLoad event [3]. From the
figure we observe that elision of superfluous JS improves the
median PLT by 5% for the median page and at least 10% for
the pages in the long tail. Note that one should not compare
the two distributions on the figure and speculate that
performance improvements on slower phones are higher
than that on a relatively faster phone. While this assumption
may be true if the pages were identical across page loads on
the two devices. However, we found that 13% of JS libraries
loaded during our experiments execute different set of JS
functions on Moto G and Moto G4 mobile devices. Therefore,
the pages loaded on the two devices have different amounts
of superfluous code that was elided by our proxy.

4 LIMITATIONS AND FUTUREWORK
While our experiments are designed to passively monitor the
JS usage on webpages, they do not capture execution of JS
functions that triggers only from user-interactions with the
page. Therefore, our experiments may have over-estimated
the amount of superfluous JS for certain pages. We argue
that a comprehensive coverage of all executed JS functions
can only be achieved from a real world deployment of our
methodology. A real world deployment will not only help
accurately identify all executed JS functions but also help
identify how websites change JS behavior under different
conditions, such as the geographic locations, time of day,
etc. Future work with real-world data could help address
the current limitations of this paper.

5 RELATEDWORK
The Web performance community has developed several
techniques to improve JS-related operations on client
devices and improve page load times. For example, Google
Chrome implements the script-streaming thread that parses

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Median Improvement in PLT (%)

Fr
ac

tio
n 

of
 P

ag
es

Moto G1
Moto G4

Figure 5: CDF of the median percentage improvement
in PLT. Notice the log scale on x-axis.

JS resources in parallel to their download – reducing the
parsing time and the PLT by up to 10% [29]. Current
implementation of script-streaming thread parses exactly
one JS resource at a time on the script-streaming thread,
even when many JS resource download in parallel. As such,
the benefits of script-streaming thread remain limited and
therefore, other JS resources on the page must be parsed
after they are downloaded. Our previous work shows that
PLTs can be further improved by 6% by rearranging script
tags in the HTML in such a way that allows for larger JS
resources to be parsed on the script streaming thread [26].
WebAssembly is a new programming language that is

smaller than JS code and allows for faster execution than JS
code [16]. The WebAssembly code is delivered to clients in
an already parsed and compiled byte code format, unlike JS
resources that must be parsed and compiled by the browser
after they are downloaded [24, 25]. Similarly, BinaryAST is
an under-development proposal by Mozilla and Facebook to
speed up parsing and compilation operations of JS resources
on Web browsers. With BinaryAST, developers write JS code
but convert it into a binary representation for sending it to
a compatible Web browser [38, 42, 45].
Netravali et al. developed two tools, Scout and Polaris,

to generate fine-grained dependency graphs of webpage
resources with the goal of loading resources in the order
they are needed on webpages. Their experiments suggest an
improvement of 34% in the median PLT [34]. Another tool,
Klotski, investigates improving user-perceived webpage
performance by performing lexical analysis of the HTML
document to learn the dependency tree [22]. Netravali et al.
also proposed a tool for Web servers to precompute JS heap
and DOM trees pertaining to a given webpage with the goal
to eliminate intermediary JS computations on the end-user
device’s CPU [35].



0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Superfluous CSS Rules (%)

Fr
ac

tio
n 

of
 J

S
 R

es
ou

rc
es

Figure 6: CDF of superfluous CSS rules.

To reduce the workload on devices with slow CPUs, such
as mobile phones, several Web browsers improve webpage
performance by performing CPU-intensive DOM, CSSOM,
and the render tree manipulations in well-provisioned cloud
data centers [21, 23, 44]. Amazon’s Silk browser allows
webpages to be loaded through their cloud data centers,
where some of the webpage operations are performed in
the cloud and the results are delivered as compressed blob
to the client device [17, 30, 40].
Removal of superfluous code has also been studied

from the perspective of improving security. Azad et al.
investigate the benefits of debloating various server-side
Web applications [19] and show both performance and
security improvements by eliding the dead code on
webpages. Similarly to our experiments, their experiments
do not detect the coverage of any code that executes due
to user interactions. However, the methodology we discuss
in this paper is specifically designed to work with existing
RUM solutions and CDN proxy servers, which offers the
benefit to learn JS coverage from various user-interactions
through a real world deployment. Moreover, the work by
Azad et al. does not implement any fallback mechanisms to
load function elided mistakenly, which as we discuss in the
paper is critical for proper functionality of the webpage.

6 CHALLENGES WITH CSS ELISION
We also investigate the existence of superfluous Cascading
Style Sheet (CSS) rules on webpages. To the best of our
knowledge, Chrome Coverage API is the only known
method to programmatically detect CSS usage on webpages.
Our analysis suggests the measurements done by the
Coverage API are accurate, however, similarly to JS usage
measurements, the accuracy depends on when we perform
the measurement. As mentioned earlier, the Coverage API
currently cannot be used to perform passive measurements
and therefore, active experiments performed using it can

only help collect CSS usage based on how webpages load
apply CSS rules for conditions simulated in an in-lab setting.
Unlike JS, CSS rules are key-value pairs and do not

contain JS-like functions that can be modified to detect
execution. Moreover, Web browsers do not throw errors
when a certain CSS rule is not found in the CSS Object
Model (CSSOM) [28]. As such, there is no know mechanism
to passively detect superfluous CSS rules, elide it, and have it
back-filled in case its needed during the page load. Therefore,
if a non-superfluous CSS rule is elided, the resultant CSSOM
could generate an incorrect page rendering. As a result, it
is challenging to systematically verify whether a page with
no superfluous CSS rules will always produce correct UI for
the end-user. Knowing the challenges, we explore the oppor-
tunity of measuring the CSS usage and PLT improvements
with elision, via active experiments using the Coverage API.

When a webpage is loaded, the Coverage API provides
byte ranges of CSS rules that were applied to the page. We
use the puppeteer library to actively load pages via our
proxy and to fetch these byte ranges from the Coverage
API. We then elide the superfluous rules from the CSS
resource that do not lie in that range. Figure 6 shows
a surprising amount of superfluous CSS rules on many
popular pages. Specifically, the CSS rules on the median
page 87% superfluous – resulting in download of up to two
megabytes of superfluous CSS payload on some pages.

Note that since CSS rule parsing is not CPU-intensive [37],
network conditions are more likely to impact the PLT.
Therefore, in these experiments we compare the PLT across
different simulated network conditions, such as 3G and LTE.
We use the following network settings to simulate a 3G
network between a WPT client and our proxy server: round
trip time (RTT) of 150ms, downlink bandwidth of 1.6Mbps,
and uplink bandwidth of 768Kbps [1, 2, 33]. Similarly,
we simulate LTE network as follows: RTT of 70ms and
downlink and uplink bandwidth of 12Mbps each.

In Figure 7, we show the PLT differences with and without
superfluous CSS rules. We observe that pages loaded under
simulated 3G network conditions experience a slightly higher
improvement in the median PLT than pages loaded under
simulated LTE network for some webpages. Moreover, for
the median page the PLT improves by 10%. We also observe
improvements up to 34% under both 3G and LTE conditions.
Since at themoment there is noway to passively learn CSS us-
age on real user page loads, we are working with Chromium
engineers to expose the CSS coverage data via JS method.
Finally, to allow further research and to maintain paper

anonymity while its under the review process, we plan to
open-source the proxy after acceptance of the paper.



1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Median Improvement in PLT (%)

Fr
ac

tio
n 

of
 P

ag
es

3G
LTE

Figure 7: CDF of the median percentage improvement
in PLT. Notice the log scale on x-axis.

7 CONCLUSIONS
Website developers import JS library bundles to generate aes-
thetically appealing experiences for their users. Our research
shows that these libraries are often only partially utilized –
resulting in large amounts of superfluous code on the website
that must be downloaded, decompressed, and parsed before
execution. When these JS operations block the main thread
to the device’s CPU to process the superfluous code, the PLT
time gets negatively impacted. In this paper, we present our
early analysis on how superfluous JS code could be identified
and elided from webpages using passive measurement tech-
niques. Our results indicate median PLT improvements of
5% and 10% improvements for the 80th percentile of pages.
Our goal with the paper is to not only provide guidance

on how developers could modify their JS resources to
monitor usage but to motivate for the need of comprehen-
sive monitoring of JS resources. Based on our work, we
recommend website developers to invest efforts in JS usage
monitoring techniques, either on their web servers or via
their contracted CDN vendors, with the goal to improve the
end-user’s Web experience.

ACKNOWLEDGMENTS
Thanks to Stephen Ludin and Martin Flack for providing
feedback on an earlier version of this manuscript.

DISCLOSURE
In the interest of full disclosure, Akamai has patents both
granted and pending in this subject matter area. As always,
an understanding of the patent landscape is advisable be-
fore proceeding with any particular solution. The positions,
strategies, or opinions reflected in this article are those of
the authors and do not necessarily represent the positions,
strategies, or opinions of Akamai.

REFERENCES
[1] Simulate lossy network conditions for mobitest agents. https://

www.webpagetest.org/forums/showthread.php?tid=12472, Jul. 2013.
[2] Updating 3G profile. https://www.webpagetest.org/forums/

showthread.php?tid=12141, Jul. 2013.
[3] Navigation Timing. http://w3c.github.io/navigation-timing/, Aug.

2015.
[4] The Ultimate Guide to Geographic Specific Content. https://

wpcurve.com/geographic-specific-content/, Jul. 2015.
[5] Cathpoint Synthetic Monitoring. http://www.catchpoint.com/

synthetic-monitoring/, Apr. 2018.
[6] Configuring a SOCKS proxy server in Chrome. https:

//www.chromium.org/developers/design-documents/network-
stack/socks-proxy, Oct. 2018.

[7] Dynatrace Real user monitoring (RUM). https://www.dynatrace.com/
capabilities/real-user-monitoring/, Apr. 2018.

[8] eval(). https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/GlobalObjects/eval, Oct. 2018.

[9] GlobalEventHandlers.onload. https://developer.mozilla.org/en-US/
docs/Web/API/GlobalEventHandlers/onload, 2018.

[10] How Image Manager Works. https://learn.akamai.com/en-
us/webhelp/image-manager/image-manager-user-guide/GUID-
1C4280FE-621E-4EAC-805A-43F4FA2339A0.html, Apr. 2018.

[11] How mPulse works. https://learn.akamai.com/en-us/webhelp/
mpulse/mpulse-help/GUID-EBEC9222-7876-46F9-81A8-
2227CFA89851.html, Apr. 2018.

[12] HTML5 Cross Browser Polyfills. https://github.com/Modernizr/
Modernizr/wiki/HTML5-Cross-Browser-Polyfills, Dec. 2018.

[13] Ignore Certificate Errors. https://peter.sh/experiments/chromium-
command-line-switches/#ignore-certificate-errors, Oct. 2018.

[14] PerformanceTiming.loadEventEnd. https://developer.mozilla.org/en-
US/docs/Web/API/PerformanceTiming/loadEventEnd, Oct. 2018.

[15] Test a website’s performance. https://www.webpagetest.org/, Apr.
2018.

[16] WebAssembly. https://webassembly.org/, Oct. 2018.
[17] What Is Amazon Silk? https://docs.aws.amazon.com/silk/latest/

developerguide/introduction.html, Sept. 2018.
[18] XMLHttpRequest. https://developer.mozilla.org/en-US/docs/Web/

API/XMLHttpRequest, Oct. 2018.
[19] B. A. Azad, P. Laperdrix, and N. Nikiforakis. Less is More: Quantifying

the Security Benefits of Debloating Web Applications. In USENIX
Security Symposium, Aug. 2019.

[20] K. Basques. CSS and JS code coverage. https://developers.google.com/
web/updates/2017/04/devtools-release-notes#coverage, Oct. 2018.

[21] T. Brown. Opera Mini and JavaScript. https://dev.opera.com/articles/
opera-mini-and-javascript/, Sept. 2012.

[22] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar. Klot-
ski: ReprioritizingWeb Content to Improve User Experience on Mobile
Devices. In USENIX NSDI, May 2015.

[23] L. Chi. How the Puffin Browser Works. https://medium.com/coding-
neutrino-blog/how-the-puffin-browser-works-440c91cece8f, Sept.
2018.

[24] L. Clark. What makes WebAssembly fast? https://hacks.mozilla.org/
2017/02/what-makes-webassembly-fast/, Feb. 2017.

[25] L. Clark. Making WebAssembly even faster: FirefoxâĂŹs new
streaming and tiering compiler. https://hacks.mozilla.org/2018/
01/making-webassembly-even-faster-firefoxs-new-streaming-and-
tiering-compiler/, Jan. 2018.

[26] U. Goel. Experiment: Improving Page Load Times with
Script-Streaming. https://developer.akamai.com/blog/2018/07/17/
experiment-improving-page-load-times-script-streaming, Jul. 2018.

https://www.webpagetest.org/forums/showthread.php?tid=12472
https://www.webpagetest.org/forums/showthread.php?tid=12472
https://www.webpagetest.org/forums/showthread.php?tid=12141
https://www.webpagetest.org/forums/showthread.php?tid=12141
http://w3c.github.io/navigation-timing/
https://wpcurve.com/geographic-specific-content/
https://wpcurve.com/geographic-specific-content/
http://www.catchpoint.com/synthetic-monitoring/
http://www.catchpoint.com/synthetic-monitoring/
https://www.chromium.org/developers/design-documents/network-stack/socks-proxy
https://www.chromium.org/developers/design-documents/network-stack/socks-proxy
https://www.chromium.org/developers/design-documents/network-stack/socks-proxy
https://www.dynatrace.com/capabilities/real-user-monitoring/
https://www.dynatrace.com/capabilities/real-user-monitoring/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onload
https://learn.akamai.com/en-us/webhelp/image-manager/image-manager-user-guide/GUID-1C4280FE-621E-4EAC-805A-43F4FA2339A0.html
https://learn.akamai.com/en-us/webhelp/image-manager/image-manager-user-guide/GUID-1C4280FE-621E-4EAC-805A-43F4FA2339A0.html
https://learn.akamai.com/en-us/webhelp/image-manager/image-manager-user-guide/GUID-1C4280FE-621E-4EAC-805A-43F4FA2339A0.html
https://learn.akamai.com/en-us/webhelp/mpulse/mpulse-help/GUID-EBEC9222-7876-46F9-81A8-2227CFA89851.html
https://learn.akamai.com/en-us/webhelp/mpulse/mpulse-help/GUID-EBEC9222-7876-46F9-81A8-2227CFA89851.html
https://learn.akamai.com/en-us/webhelp/mpulse/mpulse-help/GUID-EBEC9222-7876-46F9-81A8-2227CFA89851.html
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
https://peter.sh/experiments/chromium-command-line-switches/#ignore-certificate-errors
https://peter.sh/experiments/chromium-command-line-switches/#ignore-certificate-errors
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/loadEventEnd
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceTiming/loadEventEnd
https://www.webpagetest.org/
https://webassembly.org/
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://dev.opera.com/articles/opera-mini-and-javascript/
https://dev.opera.com/articles/opera-mini-and-javascript/
https://medium.com/coding-neutrino-blog/how-the-puffin-browser-works-440c91cece8f
https://medium.com/coding-neutrino-blog/how-the-puffin-browser-works-440c91cece8f
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://hacks.mozilla.org/2017/02/what-makes-webassembly-fast/
https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/
https://developer.akamai.com/blog/2018/07/17/experiment-improving-page-load-times-script-streaming
https://developer.akamai.com/blog/2018/07/17/experiment-improving-page-load-times-script-streaming


[27] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Measuring
What is Not Ours: A Tale of 3rd Party Performance. In ACM PAM, Mar.
2017.

[28] I. Grigorik. Constructing the Object Model. https:
//developers.google.com/web/fundamentals/performance/critical-
rendering-path/constructing-the-object-model, Aug. 2018.

[29] M. Holtta and D. Vogelheim. New JavaScript techniques for rapid page
loads. https://blog.chromium.org/2015/03/new-javascript-techniques-
for-rapid.html, Mar. 2015.

[30] A. Ku. The Amazon Kindle Fire: Benchmarked, Tested, And Re-
viewed. https://www.tomshardware.com/reviews/amazon-kindle-
fire-review,3076-7.html, Nov. 2011.

[31] P. LePage. Responsive Web Design Basics. https:
//developers.google.com/web/fundamentals/design-and-ux/
responsive/, Sept. 2018.

[32] P. Meenan. How Fast is Your Web Site? In ACM Queue, Volume 11,
issue 2, Mar. 2013.

[33] P. Meenan, V. B, and S. Burnicki. Cross-platform support for traffic-
shaping. https://github.com/WPO-Foundation/wptagent/blob/master/
internal/trafficshaping.py, Oct. 2018.

[34] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan. Polaris: Faster
Page Loads Using Fine-grained Dependency Tracking. In USENIX
NSDI, Mar. 2016.

[35] R. Netravali and J. Mickens. Prophecy: Accelerating Mobile Page Loads
Using Final-state Write Logs. In USENIX NSDI, Apr. 2018.

[36] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A
Platform for High-performance Internet Applications. SIGOPS Oper.

Syst. Rev., 44(3), Aug. 2010.
[37] A. Osmani. The Cost of Javascript. https://medium.com/

@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4,
Aug. 2018.

[38] J. Picado. Abstract syntax trees on Javascript. https://medium.com/
@jotadeveloper/abstract-syntax-trees-on-javascript-534e33361fc7,
Mar. 2016.

[39] J. Saring. 11 Javascript Utility Libraries you Should Know in
2018. https://blog.bitsrc.io/11-javascript-utility-libraries-you-should-
know-in-2018-3646fb31ade, May 2018.

[40] A. Shimpi. Amazon’s Silk Browser Acceleration Tested:
Less Bandwidth Consumed, But Slower Performance.
https://www.anandtech.com/show/5139/amazons-silk-browser-
tested-less-bandwidth-consumed-but-slower-performance, Nov.
2011.

[41] M. Steiner and R. Gao. What slows you down? Your network or your
device? In arXiv:1603.02293, Mar. 2016.

[42] D. Teller. Towards a JavaScript Binary AST. https://yoric.github.io/
post/binary-ast-newsletter-1/, Aug. 2017.

[43] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystifying Page Load Performance with WProf. In USENIX NSDI,
Apr. 2013.

[44] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding up Web
Page Loads with Shandian. In USENIX NSDI, Mar. 2016.

[45] S. yu Guo. Binary AST Proposal Overview. https://github.com/tc39/
proposal-binary-ast, Jul. 2017.

https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/constructing-the-object-model
https://blog.chromium.org/2015/03/new-javascript-techniques-for-rapid.html
https://blog.chromium.org/2015/03/new-javascript-techniques-for-rapid.html
https://www.tomshardware.com/reviews/amazon-kindle-fire-review,3076-7.html
https://www.tomshardware.com/reviews/amazon-kindle-fire-review,3076-7.html
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://github.com/WPO-Foundation/wptagent/blob/master/internal/traffic_shaping.py
https://github.com/WPO-Foundation/wptagent/blob/master/internal/traffic_shaping.py
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@jotadeveloper/abstract-syntax-trees-on-javascript-534e33361fc7
https://medium.com/@jotadeveloper/abstract-syntax-trees-on-javascript-534e33361fc7
https://blog.bitsrc.io/11-javascript-utility-libraries-you-should-know-in-2018-3646fb31ade
https://blog.bitsrc.io/11-javascript-utility-libraries-you-should-know-in-2018-3646fb31ade
https://www.anandtech.com/show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-but-slower-performance
https://www.anandtech.com/show/5139/amazons-silk-browser-tested-less-bandwidth-consumed-but-slower-performance
https://yoric.github.io/post/binary-ast-newsletter-1/
https://yoric.github.io/post/binary-ast-newsletter-1/
https://github.com/tc39/proposal-binary-ast
https://github.com/tc39/proposal-binary-ast

	1 Introduction
	2 Experimental Methodology
	3 Results
	4 Limitations and Future Work
	5 Related Work
	6 Challenges with CSS Elision
	7 Conclusions
	References

