
State of the Internet
Volume 9 | Issue 5

The High Stakes
of Innovation
Attack Trends in Financial Services

1The High Stakes of Innovation: Attack Trends in Financial Services | Volumn 9, Issue 5 2023 |

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chantrue; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan

Table of Contents

FS-ISAC guest column: Supply chain risk in fi nancial services

The crossroads of innovation and risk

Web application vulnerabilities increase in sophistication and scale

API attacks and vulnerabilities

Financial services takes a proactive approach to third-party scripts

Vertical and regional shifts in DDoS attacks continue

Financial services customers under attack

Compliance and regulations

Financial services: APJ snapshot

Financial services: EMEA snapshot

Conclusion: Fortifying your defenses with actionable insights

Methodology

Credits

02

04

06

11

12

14

18

24

25

31

37

39

41

2

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

FS-ISAC guest column:
Supply chain risk in fi nancial services

One of the key threat vectors facing the global financial sector is supply chain

risk. As shown by Akamai’s research, the significant increase in attacks and

vulnerabilities through third-party APIs and scripts requires firms to take an

increasingly active approach to hardening systems and third-party risk

management more broadly. We recommend a multilayered defense-in-depth

approach that integrates preventive, detective, and assurance controls, as

well as robust resilience plans for smooth transitioning to alternatives should

systems be compromised.

Those controls include reducing the attack surface; securing coding practices;

patching, isolating, and sandboxing applications; utilizing web application

firewalls; segmenting networks to enable rapid containment; utilizing data-at-

rest encryption; hardening servers; and managing access to enforce the least

privilege necessary to perform authorized activities.

Financial firms must also take an active, ongoing approach to security

validation and governance of suppliers. Both from risk management and

regulatory perspectives, relying on periodic security questionnaires to assess

a supplier’s security posture is no longer sufficient.

As we outlined in our joint research with Akamai through our Critical Providers

Program earlier in 2023, Distributed Denial of Service (DDoS) is far more of a

nuisance today than it has been traditionally, especially to the financial sector,

which is now the most targeted of all industries. While DDoS may not impact

internal operations or data loss per se, it can have an outsized impact on firm

reputation and customer confidence should websites be unavailable even for

seconds (during which the threat actor posts a screenshot on social media of

the website being down). It may also be a decoy to divert resources while a

threat actor conducts another type of attack, such as malware or ransomware.

Financial fi rms

must also take

an active, ongoing

approach to

security validation

and governance

of suppliers.

3The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

While financial firms tend to have strong DDoS protections in place, threat

actors are continuously updating their tools and techniques, requiring ever

more resources to ensure continuous uptime. The concentration of DDoS in

the Europe, Middle East, and Africa region points to the use of DDoS as a

tool of politics, hacktivism, and cyber warfare, specifically in relation to the

Russia–Ukraine conflict. Financial firms must ensure that their threat

intelligence programs include geopolitical considerations and analyses,

as the financial sector is likely to continue to be a target in future geopolitical

conflicts around the world.

To continuously build resilience to the above-mentioned threat vectors,

financial firms should conduct exercises practicing incident response to these

types of scenarios. Akamai’s in-depth research helps exercise planners build

plausible scenarios based on the current threat landscape to ensure ongoing

adaptation to the new tools, techniques, and procedures being used in the wild.

 Teresa Walsh

 Global Head of Intelligence, FS-ISAC

About FS-ISAC

FS-ISAC is the member-driven, not-for-profit organization that advances

cybersecurity and resilience in the global financial system, protecting

the financial institutions and the people they serve. Founded in 1999,

the organization’s real-time information-sharing network amplifies the

intelligence, knowledge, and practices of its members for the financial

sector’s collective security and defenses. Member financial firms

represent US$100 trillion in assets in 75 countries.

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 32023 |

4The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

The crossroads of innovation and risk

In an era characterized by unprecedented digital transformation, the financial

services industry stands at the crossroads of innovation and risk. As technology

reshapes the landscape of financial transactions, it simultaneously ushers in a

new era of cyberthreats that target the heart of economic stability. This State of

the Internet (SOTI) report delves into the growing threat of existing cyberattacks

(e.g., Distributed Denial of Service [DDoS], phishing) and emerging cyberattacks

against the financial services industry, including prominent attack vectors like

web application vulnerabilities.

Notably, there is a spotlight on application programming interface (API), with its

inclusion in the latest Open Web Application Security Project — the OWASP API

Security Top 10 release — which is a pivotal step in API security. We will examine

the intricacies of API vulnerabilities, unveil the potential ramifications of

inadequate security measures, and offer proactive solutions to safeguard these

crucial interfaces. The resurgence of DDoS attacks also takes center stage, with

financial institutions bearing the brunt of these attacks more than any other

industry, particularly in one part of the world. Additionally, this report benchmarks

the volume of web application attacks against financial institutions compared

with other common targets, with a deep dive into the preferred attack vector

used by adversaries. By shedding light on the preferred methods of intrusion,

this report aims to empower financial institutions with the knowledge required

to fortify their defenses effectively.

We will also explore the symbiotic relationship among financial institutions and

financial data aggregators, with a focus on the vulnerabilities that cybercriminals

can exploit through these intermediaries. We will delve into strategies to

counteract malicious bots and provide insights to secure digital interactions.

By illuminating the evolving threat landscape and equipping financial institutions

with actionable insights, this report aims to improve information sharing and

support the collective effort to secure the backbone of global economies.

42023 |

5

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Top 5 insights

1. Web application and API attacks in the financial services industry grew by

65% when comparing Q2 2022 with Q2 2023, accounting for 9 billion attacks

in 18 months. This was driven in part by cybercriminal groups’ active pursuit

of zero-day and one-day vulnerabilities as pathways for initial intrusion.

2. Financial services continues to see a rise in Layer 3 and Layer 4 DDoS attacks

and has surpassed gaming as the top vertical. This increase appears to be

caused by the dramatic surge in the power of virtual machine botnets and

pro-Russian hacktivism motivated by the Russia–Ukraine conflict.

3. The Europe, Middle East, and Africa (EMEA) region accounts for 63.52%

of Layer 3 and Layer 4 DDoS events, continuing the “regional shift” trend

observed last year. The number of attacks against this region was nearly

double the number of the next top region. We surmise this is due to the

attacker groups’ financial and political motivations against European

banks. Additionally, this shows how easily adversaries can quickly

switch their attention.

4. While the financial services industry has fewer third-party scripts than

other industries (30%), it is prone to attacks like web skimming. However,

financial services organizations are proactively fighting back with the

adoption of solutions to comply with the new requirements of the

Payment Card Industry Data Security Standard (PCI DSS) v4.0.

5. The ascending number of malicious bot requests (1.1 trillion), which

spiked by 69%, exemplifies the continued assaults against financial

services customers and their data via attacks like account takeovers

and risks posed by financial aggregators.

52023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

6The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Web application vulnerabilities increase
in sophistication and scale

A comparison of our recent data with last year’s financial services report, Enemy

at the Gates: Analyzing Attacks on Financial Services, offers a critical perspective

on how attacks against financial institutions have evolved and which security

risks and challenges the industry continues to face. In particular, web application

and API attacks continue to persist, with Akamai research teams observing the

continued rise in sophistication and scale of these attacks against financial

services. The industry’s digital initiatives, such as open banking, booming

embedded finance market, and banking as a service, in which APIs are critical,

have expanded the attack surface.

A significant growth in the number of attacks in the financial services industry

was seen during the 18-month reporting period (January 2022 – June 2023), as

exemplified by the 65% increase in web application and API attacks year over

year between Q2 2022 and Q2 2023. Financial services remains the third-most

targeted web attack vertical (Figure 1), accounting for 9 billion attacks. This

also stems from an explosion of web application vulnerabilities that are publicly

available and ready for exploitation. Our report Slipping Through the Security

Gaps highlighted how 2022 was a record year for web application and API

attacks due to the emergence of critical security flaws like the ProxyNotShell

vulnerability (CVE-2022–41040).

Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

Fig.1: Financial services remains in the third spot in web application and API attacks during the reporting
period because of the industry’s continued digitalization and the alarming rate in which adversaries are

exploiting web application vulnerabilities in attacks

10 B

15 B

20 B

5 B

0 B

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

High Tech
nology

Commerce

Financia
l S

ervi
ce

s

Manufactu
rin

g

Other D
igita

l M
edia

Video M
edia

Public
 Secto

r

Gaming

Socia
l M

edia

Busin
ess

 Servi
ce

s
Other

34.34%

22.18%

16.38%

7.82%
6.15%

3.24% 2.99% 2.89%
1.28% 1.19% 1.54%

Fig. 1: Financial services remains in the third spot in web application and API attacks during
the reporting period because of the industry’s continued digitalization and the alarming rate

in which adversaries are exploiting web application vulnerabilities in attacks

Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

62023 |

7The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

A deeper examination of web application and API attacks in financial services
(Figure 2) reveals that banks are bearing the brunt of web attacks (58%), followed
by other financial services companies, such as fintech, capital markets, property
and casualty insurance, and payment and lending companies (28%). Insurance
companies account for 14% of web application and API traffic within the financial
services sub-verticals.

A common theme among attacks against organizations this year is the active
pursuit of zero-day and one-day vulnerabilities in internet-facing applications
to obtain initial access to intended targets. In ransomware attacks, these
vulnerabilities are becoming a common method of intrusion, as they are an
easier path to an initial breach. Patching then becomes a race against time
for organizations as the increasing rate of adversaries’ adoption of web
vulnerabilities creates an arsenal to breach their targets.

Local File Inclusion remains top web attack vector

Local File Inclusion (LFI) vulnerabilities are also driving the surge in web
application and API attacks (Figure 3). In recent years, LFI has consistently
remained the top web attack vector, showing a 53% surge year over year,
followed by Cross-Site Scripting (XSS) and Structured Query Language injection
(SQLi). LFI enables attackers to launch a directory traversal (also known as path
traversal) attack and subsequently gain access to sensitive information to
further the attack. In some cases, adversaries use LFI for a variety of nefarious
purposes: to expose files or disclose information on the web servers via tricking
the web application that its input is valid, to perform remote code execution
(RCE), or to gain a foothold in the enterprise network.

Top Web App and API Attack Sub-Verticals: Financial Services
January 1, 2022 — June 30, 2023

4 B

6 B

2 B

0 B

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

Fig. 2: Banks are heavily impacted by web attacks because of the type of data they possess; however,
other financial services organizations like fintech, capital markets, and so forth are also significantly hit

Banking Other Financial Services Insurance

58%

28%

14%

Fig. 2: Banks are heavily impacted by web attacks because of the type of data
 they possess; however, other financial services organizations like fintech,

capital markets, and so forth are also significantly hit

Top Web App and API Attack Sub-Verticals: Financial Services
January 1, 2022 — June 30, 2023

72023 |

8

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

CL0P ransomware highlights the dangers of SQLi

LFI has become the top web attack type while XSS and SQLi have decreased
in numbers in the last years, possibly due to a combination of factors, including
web application firewall (WAF) products with better detection capabilities for
XSS and SQLi attacks, which may lead attackers to use other methods. However,
the decline in SQLi does not imply that it’s dead nor diminishes its potential
danger or impact on financial services. Case in point: In May 2023, the group
behind CL0P ransomware launched attacks on myriad organizations by
exploiting an SQLi vulnerability in MOVEit Transfer, assigned CVE-2023-34362.
According to our analysis, attackers used this security flaw to gain access to the
file transfer servers that hold sensitive data and exfiltrate them, with the goal of
using stolen information to demand ransom payout to victimized companies.
Financial institutions were some of the high-profile organizations impacted by
this attack. However, given how CL0P ransomware has exploited vulnerabilities
in various managed file transfer platforms, any organization using this software/
platform is at risk of ransomware infection. It remains to be seen if other
ransomware groups will follow that lucrative business model.

Top Web App and API Attack Vectors: Financial Services
January 1, 2022 — June 30, 2023

Fig.3: LFI consistently retains the top web attack vector spot, but other
vectors like SQLi, continue to pose risks to financial services

4 B

6 B

2 B

0 B

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

OtherJSIPHPiSQLiXSSLFI

57.98%

24.16%

10.76%

4.22%
1.31% 1.56%

Fig. 3: LFI consistently retains the top web attack vector spot, but other vectors
 like SQLi, continue to pose risks to financial services

Top Web App and API Attack Vectors: Financial Services
January 1, 2022 — June 30, 2023

82023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

Patching then

becomes a race

against time for

organizations as the

increasing rate of

adversaries’ adoption

of web vulnerabilities

creates an arsenal

to breach their targets.

9The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Old fl aws, new web stacks: Attack payloads in fi nancial services

Organizations face the challenge of identifying and patching vulnerable systems
in a timely manner. Attackers know this, and as such, continue to abuse older
vulnerabilities as a point of entry to their intended targets. Additionally, the
increasing rate in which attackers are adopting zero-day vulnerabilities in
their arsenal further amplifies the issue of closing one’s security gaps. And
financial services is no exception — among numerous assaults against this
industry, we observe examples of both common injection attacks that leverage
old vulnerabilities and attacks targeting newer or modern web technology stacks
via novel tactics.

In one case, we observed an RCE vulnerability (CVE-2017-9841) in PHPUnit, a
testing framework for PHP, that was discovered five years ago and is still being
actively abused in the financial services industry (Figure 4).

The obscured text decodes to “I can easily execute PHP code on your server.”
This payload was used by the attacker to indicate a successful RCE and to
mark the application as vulnerable.

The next payload is an example of how attackers are shifting their attention
to newer web technology stacks (Figure 5). In this instance, Node.js (an open
source server-side environment based on JavaScript and popular among web
developers) is used. We came across a Server-Side Template Injection (SSTI)
attack, targeting multiple financial services customers. In our App and API SOTI
report, we described that although SSTI may appear to be a simple RCE exploit,
it is one of the threats to heed, as SSTI allows attackers to inject malicious
code into a template, which, when executed on the server, allows adversaries
to access sensitive information or take control of the server.

Fig. 4: In this payload, attackers attempt to perform RCE to determine if the application is vulnerable

Fig. 4: In this payload, attackers attempt to perform RCE
to determine if the application is vulnerable

92023 |

10

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Figure 5 shows that the payload starts with #{ and ends with }, which is a
common annotation in template engines to evaluate the string as code. The
expression inside the curly braces consists of importing the Node.js “child_
process” package, which allows the execution of shell commands.

The shell command that is being executed is “curl”, which is in most of the
Linux-based operating systems by default. Additionally, the URL being called is
Base64 encoded, and is being decoded via the built-in “base64” Linux command
(Figure 6). This comes as no surprise as most of the code injection payloads
we’ve seen recently are obfuscated with Base64 encoding, making it a prevalent
method among attackers.

The decoded URL points to “pipedream.net”, a service often utilized by web
developers to receive and debug HTTP requests. Attackers use this platform for
a “blind” reconnaissance approach. It’s a prevalent method in which attackers
use out-of-band signaling to detect vulnerabilities. In essence, the attacker’s
server here — pipedream.net — awaits incoming connections. When the attacker
sends an exploit to the target and a connection appears, it suggests the server is
vulnerable and open to further exploitation. For a deeper dive into this method,
refer to PortSwigger’s blog.

With the rising popularity of template engines among contemporary web
developers, we anticipate that SSTI attacks will remain a critical concern among
organizations, regardless of industry type. The presence of publicly available
exploits in the wild, and the simplicity of the payload, makes this a viable
vulnerability for exploitation. Enterprises are advised to construct security
strategies, which include WAFs, to prevent exploitation.

Fig. 5: This payload is used to execute shell commands

Fig. 5: This payload is used to execute shell commands

Fig. 6: This is the URL we get from decoding the Base64-encoded string

Fig. 6: This is the URL we get from decoding the Base64-encoded string

With the rising

popularity of template

engines among

contemporary web

developers, we

anticipate that SSTI

attacks will remain

a critical concern

among organizations,

regardless of

industry type.

102023 |

11

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

API attacks and vulnerabilities

APIs are connective fibers that enable the safe exchange of information in
the case of open banking and they power digital transformation in organizations.
This, in turn, introduces further business growth and a seamless user experience
that benefits customers, banks, and third-party companies that provide financial
services. The wide adoption of APIs in financial services and other verticals,
and the growing concern that attackers are exploiting business logic flaws in
them, have put API security on the map. Even the latest OWASP Top 10 release
shifted its attention to API security risks. In this section, we will look closely at
the prominent vulnerability vectors that security defenders and financial services
organizations need to be wary of, and the ramifications of successful attacks.

One major vulnerability that companies in the financial services sector are
dealing with is shadow API. In most cases, shadow APIs are the outcome of
working without following procedures and protocols (e.g., a developer who
rushed into completing an urgent project without documenting their work).
Once APIs are undocumented, they are also untracked and unmanaged,
thus, unsecure. This lack of visibility into the APIs and their assets forces
companies to monitor problems since they are not aware of who is using
these APIs and in what manner.

Another issue that is encountered in the API world is leakage of sensitive data.
This vulnerability is highly concerning and causes a lot of damage to companies,
both financially and reputationally. Sensitive data, which includes personally
identifiable information (such as usernames, addresses, emails, phone numbers,
etc.), is being passed, negligently, via the URLs instead of the payloads. Any
data breach can be catastrophic, but when it occurs in a financial institution,
the damage is critical as clients’ bank accounts and money are involved. The
most recent data leakage occurred in a state agency, when an unauthenticated
endpoint exposed vulnerable data, which included Social Security numbers,
addresses, and dates of birth.

112023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

9 billion
Number of web
application and
API attacks against
fi nancial services

12The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Two main categories account for most of the attacks in the API world nowadays.
The first one is access control bypass, which includes attacks on endpoints
that should require user validation. However, the lack of any proper validation
provides a fertile ground for malicious activities. The second category, which
we’ve seen for a few consecutive years, is account takeover, which includes
various attacks such as Broken Object Level Authorization (BOLA), brute force,
and credential stuffing. These BOLA attacks are considered more “traditional”
than others, but they have been ranked at the top of the OWASP Top 10 API
vulnerabilities for several years.

Financial services takes a proactive approach
to third-party scripts

Traditionally, the financial services industry has heavily relied on first-party
scripts to add functionalities to their websites. But online banking is gaining
traction, and with regulations easing up, financial institutions can incorporate
more third-party scripts to improve overall user experience.The rapid adoption
of third-party scripts, which began during the COVID-19 pandemic to generate
more services and offerings, can usher in new security risks. Attackers can
simply exploit client-side vulnerabilities as a point of entry or inject malicious
code into third-party scripts that are loaded as part of the website. This puts
financial services at risk of Magecart-style attacks, web skimming, and
cryptojacking, which can lead to customers’ information being stolen or used
in unauthorized transactions. Organizations may also suffer from brand and
reputation damage, compliance issues, and financial losses in the process.
Although there is no known attack against financial services via third-party
scripts vulnerabilities, it’s only a matter of time before we see adversaries
take advantage of this attack surface — therefore, having a proactive defense
like Akamai Client-Side Protection & Compliance is crucial.

Based on our data, 30% of the scripts used by financial services are from third-
party vendors (Figure 7). Although that percentage is slightly lower than for
other industries (41%), as the financial services industry expands its landscape,
it becomes vulnerable to client-side attacks. The good news is financial services
organizations are recognizing the potential security threat and are putting
solutions in place. Additionally, based on Forrester’s The State Of Application
Security study, the new requirements highlighted by the PCI DSS v4.0 are
driving 16% of financial institutions to adopt client-side code protections to
comply with regulations. We’re likely to see the number of adoptions increase
as the financial services industry continues to incorporate more third-party
scripts in tandem with their digital efforts.

122023 |

13

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

A recent joint CSO/Akamai survey, From Bad Bots to Malicious Scripts: The
Effectiveness of Specialized Defenses, shows that suspicious script behavior is
common. More than 8 in 10 (81%) respondents overall said their organizations
have been targeted by suspicious script behavior within the last 12 months, with
94% of U.S. respondents and 72% of European respondents reporting targeting.

Both compliance and threat are driving companies to evaluate the risk around
their script environment.

First-Party vs. Third-Party Scripts

Fig. 7: A total of 30% of the scripts used by financial services are from third-party
vendors compared with 41% of the scripts used by other verticals

50%

75%

100%

25%

0%
Financial Services Other Verticals

First-Party Third-Party

Fig. 7: A total of 30% of the scripts used by financial services are from third-party
vendors compared with 41% of the scripts used by other verticals

First-Party vs. Third-Party Scripts

132023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

14The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Vertical and regional shifts in DDoS attacks continue

We are continuing to see a global increase in DDoS attacks in the financial
services vertical (as observed via our DDoS protection and network cloud
firewall capabilities for Layer 3 and Layer 4 attacks). Figure 8 shows that
financial services has surpassed gaming as the top vertical for DDoS attacks.
Figure 9A shows how Layer 3 and Layer 4 DDoS attack events for all combined
verticals significantly decreased during the fall of 2022, but Figure 9B shows
that the financial services vertical continued to rise.

Fig. 8: The top verticals impacted by web application and API attacks
are commerce, high technology, and financial services

Top DDoS Attack Event Verticals
January 1, 2022 — June 30, 2023

At
ta

ck
 E

ve
nt

 C
ou

nt

1000

1500

2000

2500

500

0

Gaming

Financia
l S

ervi
ce

s

High Tech
nology

Pharm
a/H

ealth
ca

re

Busin
ess

 Servi
ce

s

Commerce

Gamblin
g

Manufactu
rin

g

Video M
edia

Nonprofit/
Educa

tio
n

Other

29.25%

25.63%

18.40%

6.77%
5.23% 4.82%

3.24%
1.79% 1.58% 1.19% 2.09%

Fig. 8: Financial services is now the top vertical for Layers 3 and 4 DDoS attack
events; the financial services and gaming verticals account for more than

50% of the DDoS attack events

Top DDoS Attack Event Verticals
January 1, 2022 — June 30, 2023 Number 1

Financial services is the
vertical with the most DDoS
attacks, even surpassing
the gaming industry

15

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

DDoS attacks have

long been considered

to be one of the most

powerful weapons

on the internet.

DDoS attacks have long been considered to be one of the most powerful
weapons on the internet. They can lead to huge amounts of service interruptions
and large financial losses, impact just about any part of a network’s resources or
operations, and occur at any time. When a bank gets hit by a DDoS attack, it
could knock services and websites offline, prohibit customers from being able to
access accounts, and jeopardize business operations, which can lead to a huge
loss of money and tarnish the brand’s reputation.

Fig. 9A: Layer 3 and Layer 4 DDoS attack events for all combined verticals decreased by
more than one third from the end of August 2022 through the beginning of December 2022

Weekly DDoS Attack Events
January 1, 2022 — June 30, 2023

At
ta

ck
 E

ve
nt

 C
ou

nt

All Verticals Financial Services

Apr 2
2

Mar 2
2

Jan 22

Feb 22

May 2
2

Jun 22
Jul 2

2

Apr 2
3

Mar 2
3

Jan 23

Feb 23

May 2
3

Jun 23
Jul 2

3

Aug 22

Sept 2
2

Oct
22

Nov 2
2

Dec 2
2

100

150

50

0

Fig. 9A: Layer 3 and Layer 4 DDoS attack events for all combined verticals decreased by
more than one third from the end of August 2022 through the beginning of December 2022

Weekly DDoS Attack Events
January 1, 2022 — June 30, 2023

Quarterly DDoS Attack Events: Financial Services
January 1, 2022 — June 30, 2023

400

600

200

0
Q2

2023
Q1

2023
Q4

2022
Q3

2022
Q2

2022
Q1

2022

At
ta

ck
 E

ve
nt

 C
ou

nt

Fig. 9B: Aside from a minor dip in 2022 Q2, the financial services vertical continued to riseFig. 9B: Aside from a minor dip in 2022 Q2, the financial services vertical continued to rise

Quarterly DDoS Attack Events: Financial Services
January 1, 2022 — June 30, 2023

152023 |

16The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

DDoS attacks may also occur as part of an extortion scheme, such as with
ransomware groups as part of their tactics, techniques, and procedures (TTPs).
This was the situation in August 2020 when Akamai detected malicious actors
threatening to implement DDoS attacks unless a Bitcoin ransom was paid. Triple
extortion ransomware, also known as ransom DDoS (RDDoS), involves infiltrating
businesses with ransomware, threatening to expose exfiltrated customer
information if not paid, and disrupting business operations with a DDoS attack
as extra pressure to force the victim to pay the ransom. RDDoS is becoming an
increasingly disruptive form of cyber extortion and it’s gaining popularity as
cybercriminals have been finding it to be a lucrative endeavor. Ransomware
groups such as BlackCat, AvosLocker, Killnet, DarkSide, and Lazarus have been
utilizing DDoS attacks in this way in extortion schemes.

DDoS attacks in the financial services industry have also been on the rise
because of the dramatic increase of the power of virtual machine botnets and
pro-Russian hacktivism motivated by the war in Ukraine. In fact, Pro-Russian
hacktivist groups announced in early June 2023 that they would carry out
“massive” coordinated DDoS attacks on both European and U.S. financial
organizations. Killnet, REvil, and Anonymous Sudan were among the adversaries
mentioned. Perhaps this Pro-Russian hacktivism better explains the regional
shift in DDoS attacks in the financial services vertical, as EMEA now has almost
double the number of events as North America (Figure 10).

Fig. 10: EMEA has now almost double the number of Layer 3 and Layer 4
DDoS attack events as North America in the financial services vertical

DDoS Attack Events by Regions: Financial Services
January 1, 2022 — June 30, 2023

1000

1500

500

0

At
ta

ck
 E

ve
nt

 C
ou

nt

EMEA

N. A
meric

a
APJ

LATAM

63.52%

32.58%

2.17% 1.73%

Fig. 10: EMEA has now almost double the number of Layer 3 and Layer 4 DDoS attack
events as North America in the financial services vertical

DDoS Attack Events by Regions: Financial Services
January 1, 2022 — June 30, 2023

162023 |

17

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

We’ve been observing this regional shift since our previous financial services
report. We surmise that the attacks against European banks that are allies of
Ukraine are financially and politically motivated by Russia’s continued war in
Ukraine and are the main reason for this shift — and, unfortunately, this shows
how quickly and easily adversaries can switch their attention. Organizations need
to have protection in place regardless of where they are located or what kind of
company they are, as we know that no industry is immune to DDoS attacks, and
there are many other critical infrastructures (e.g., healthcare). It’s no surprise that
attackers find this weapon of choice so popular and the number of DDoS attacks
on financial services has soared. For more information on the rise of DDoS in
EMEA, please refer to the EMEA regional snapshot section of this report.

Application/web page (Layer 7) DDoS attacks

We also are seeing growth in the number of attacks on applications/web pages
(as observed via our Layer 7 DDoS protection and WAF capabilities) and many
new records have been set for volume and speed of attacks in 2023. Application-
layer DDoS attacks remain one of the top threats to financial services and
applications. Unlike traditional Layer 3 or Layer 4 DDoS attacks, which aim to
overwhelm network and transport layer infrastructure, application-layer DDoS
attacks target specific application functionalities or the application server itself.
They could cause significant damage even with a relatively smaller amount of
malicious traffic. Application-layer DDoS attacks target application-level
resources, such as CPU and memory, so the targeted application or service may
become slow or entirely unresponsive even if the network remains available. In
addition, the complexity resides with multi-vector attacks that may also exploit
specific vulnerabilities, such as software defects or misconfiguration, at the
application layer. The evolution of the Internet of Things has made internet-
connected devices more sophisticated and more difficult to defend. Finally, we
must acknowledge the challenge presented by the low cost for attackers to
provision and launch large-scale DDoS attacks with readily available DDoS-for-
hire services and underground markets.

172023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

18The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Layer 7 DDoS attacks continue to be a problem for financial applications.
Miscreants are making nonstop efforts to elevate their attack operations,
networks, and TTPs to combat stronger defenses. Some of the most common
characteristics we’ve observed from many large-scale DDoS attacks include:

• Highly distributed IP/subnet and countries

• Abundant attack sources, including infected/leased cloud service
providers, Tor exit nodes, anonymous/open proxy nodes

• GET floods

• Noncacheable URLs, such as home page, random URLs, login endpoints

• IP spoofing by advanced attackers who create botnets behind residential
ISPs, mobile carrier networks, or university networks.

• Dynamic and adaptive strikes, based on defenders’ responses

Financial institutions should prioritize a multilayered defense strategy. This
includes, but is not limited to, running regular security audits, implementing
advanced detection and mitigation, utilizing content delivery networks to
distribute traffic load, and extending perimeter security to the edge of the
internet. Additionally, keeping your cybersecurity practices proactive and
adaptive is paramount in this ever-evolving threat landscape.

Financial services customers under attack

Financial services customers constantly face an onslaught of attacks on their
sensitive data. This is not surprising since there is a large potential financial
payoff for the minimal effort required to obtain user information without
necessarily going through the complex and taxing process of breaching the
heavily guarded perimeter of the financial services industry. In this section,
we will examine the risk exposures of the financial services industry by
updating one of the datasets (Figure 11) we used in our 2022 report to
showcase and better understand how attackers are targeting financial
services organizations and their customers and devise effective strategies
to defend against these threats.

182023 |

19

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Although account takeover took the lead last year, more than 50% of the IPs
targeting financial services this year are related to web scrapers. These
automated tools are used to harvest information from websites and create
exact replicas of sites for phishing purposes, subsequently tricking users into
divulging their sensitive information.

The presence of attackers’ IPs that are associated with either account takeover
or web scrapers indicates that financial services customers and their data are
at a greater risk.

Growth in malicious bots exacerbates threats against user data

Malicious bot requests that impact the financial services industry have shown
an upward trend every quarter, with 1.1 trillion requests observed during the 18
months prior to July 1, 2023 (Figure 12). Notably, malicious bot requests surged
by 69% year over year and continue to be a growing threat to financial institutions
and their customers. The climbing number of malicious bots underscores the
potential risks they can introduce to financial services customers, such as fraud,
identity theft, and so forth. Stolen information like account details and other
personally identifiable information can be sold on the dark web for a lump sum
of money or used in other attacks.

Client Reputation Intelligence by Number of IPs

Fig.11: Distribution of Akamai Client Reputation intelligence on IPs that
are targeting the entire financial services vertical during a 90-day period

40%

30%

50%

10%

20%

0%
DoS AttackersScanning ToolsWeb AttackersAccount TakeoverWeb Scrapers

Fig. 11: Distribution of Akamai Client Reputation intelligence on IPs that
are targeting the entire financial services vertical during a 90-day period

Client Reputation Intelligence by Number of IPs

192023 |

20

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Bots serve a wide array of use cases; for instance, they can scrape website
content to craft legitimate-looking phishing websites of financial services
brands. In Q2 2023 alone, Akamai observed that more than 50% of phishing
victims are financial services organizations (Figure 13). Credential stuffing
attacks also become plausible, with attackers using bots to automate username
and password combinations that can lead to account takeover. Additionally,
attackers behind account takeover fraud and credential stuffing are capitalizing
on the practice of reusing password credentials. According to Okta’s 2022 State
of Secure Identity Report, more than half of login activities in financial services
pertains to credential stuffing attack attempts, exemplifying the prevalence of
this security risk in this industry.

Quarterly Bot Requests: Financial Services
January 1, 2022 — June 30, 2023

Fig.12: Malicious bot requests reached 1.1 trillion in 18 months, and continues to
pose security challenges to both financial services organizations and their customers

200 B

300 B

100 B

0 B

Re
qu

es
t C

ou
nt

 (B
ill

io
ns

)

Benign Bot Malicious Bot

Q2
2023

Q1
2023

Q4
2022

Q3
2022

Q2
2022

Q1
2022

Fig. 12: Malicious bot requests reached 1.1 trillion in 18 months, and continues to pose
security challenges to both financial services organizations and their customers

Quarterly Bot Requests: Financial Services
January 1, 2022 — June 30, 2023

The climbing number

of malicious bots

underscores the

potential risks they

can introduce to

fi nancial services

customers, such as

fraud, identity theft,

and so forth.

202023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

21

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

In our joint survey with CSO, we saw that ATO attacks are also a huge problem
for commerce organizations. More than three quarters (79%) of respondents
said their businesses had been targeted by account takeover attacks in the last
12 months. The problem was particularly acute in the United States, where 90%
of respondents said their organizations had been targeted.

The perils of account takeover fraud consist of successful login attempts in more
than one user account, with attackers draining the account or reselling the access
or information to other cybercriminals. However, this can be detrimental to
financial institutions who must assist and offer resources to resolve the issue.
Account takeover is both a brand and trust issue for financial services customers.

Fig. 13: Financial services had the highest number of
victims (50.6%) in phishing attacks in Q2 2023

Phishing Victims — Q2 2023

0%

10%

20%

60%

40%

30%

50%

OtherCommerceMediaHigh TechnologyFinancial
Services

50.60%

22.80%

8.10%

3%

15.40%

Fig. 13: Financial services had the highest number of victims
(50.6%) in phishing attacks in Q2 2023

Phishing Victims — Q2 2023
January 1, 2022 — June 30, 2023

212023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

22

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Financial aggregators: The good, the bad, and the ugly

The advent of digital banking has paved the way for an exchange of consumers’
account information and other banking data from multiple sources into one
dashboard or app. Financial aggregators, which are often managed by fintech,
offer services that consolidate financial information from multiple institutions,
allowing consumers to view and manage a plethora of accounts (banks, credit
cards, investment portfolios, loans, etc.) in one place. This gives consumers the
opportunities and conveniences of real-time access to all their financial data, and
aids them in making informed decisions on their finances in general. These
aggregators can be categorized into the following general buckets based on their
target customers, business models, or type of financial data they aggregate:

• Open banking compliance

• Payment

• Personal finance

• Investments

• Credit card aggregation

• Loan aggregation

• Insurance aggregation

With great benefi ts come security challenges

Despite key benefits, aggregators can present a potential attack surface and
introduce risks like fraud and identity theft to consumers. The very nature
and volume of data these aggregators hold make them lucrative targets for
cybercriminals. Moreover, the security gaps existing between the aggregators
and how the data is being collected can potentially create a new avenue for
exploitation for attackers. And although banks and other financial organizations
are heavily scrutinized, third-party providers of aggregation services may not be
subject to the same regulations and compliance requirements and, in some
cases, may be more willing than a large established bank to take risks with the
data. Attackers know this and may view such platforms as the paths of least
resistance to pilfer sensitive account or banking credentials. It’s only a matter of
time before we see adversaries launch attacks on these platforms to gain access
to a gold mine of sensitive account information to use in fraudulent transactions
or to sell in dark web marketplaces.

The very nature

and volume of data

these aggregators

hold make them

lucrative targets

for cybercriminals.

222023 |

23

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Most of these aggregators collect data from multiple external sources, and if
they are compromised, the sources of data may also be impacted because their
customer data will be part of the breach. Additionally, privacy and security
challenges may arise if the data is not handled and stored securely. Similarly,
changes in the structure or availability of these external sources can affect the
aggregator’s functionality. Data leaks can also occur as a result of these security
risks or underlying vulnerabilities in aggregators, such as:

• Unsecure data transmission: If the aggregator does not use secure
protocols like HTTPS for data transmission, it can expose the data
 to potential interception and manipulation.

• Insufficient input validation: If the aggregator accepts user input, such
as search queries or personal data, without proper validation, it can be
vulnerable to attacks such as SQLi or XSS.

• Unsecure APIs: Many web aggregators use APIs to fetch data from
various sources. If these APIs are not secured properly, they can be
exploited to gain unauthorized access to data or services.

• Lack of authentication and authorization: If the aggregator does not
properly implement authentication and authorization, it can lead to
unauthorized access to sensitive data or functions.

• Cross-Site Request Forgery or other WAF attacks: Without proper
protection, attackers can trick users into performing actions without
their consent, leading to potential data loss or account compromise.

Considering these potential risks, companies should build an edge-based
governance model for financial aggregators by providing visibility into the bot/
API traffic, including the sources of traffic, the destinations within the client’s
applications, and the volume and distribution of requests. Through this visibility,
clients should be able to determine the appropriate level of access that a
financial aggregator is allowed. This decision must take into account the
potential risks posed by these aggregators versus the ease of use they provide
for the end users. This strategic approach enables a seamless experience for
the end users while limiting the amount of information the aggregators could
exfiltrate or steal.

Finally, individual consumers should verify what types of information their
aggregator collects, and if they’re also sharing it with other providers without
their knowledge or consent. Reading the service agreement for these platforms
can help consumers have a better grasp on how these platforms work, and
whether they are comfortable with how their information is being collected,
secured, and/or shared.

1.1 trillion
Number of malicious
bot requests

24The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Compliance and regulations

Financial services is one of the most heavily regulated industries, which makes
it essential to align your security strategy with existing and emerging laws and
regulations. Some evolving compliance issues to consider in relation to your
current capabilities and policies involve resiliency, whether to pay extortion
demands, and JavaScript environments.

First, emerging cybersecurity regulations in the European Union (EU) focus
specifically on resiliency. The Digital Operational Resilience Act (DORA) is a
comprehensive EU regulation that will establish obligations for the EU financial
sector and its information and communication technology (ICT) third-party
providers under five pillars:

1. ICT risk management

2. ICT-related incident management, classification and reporting

3. Digital operational resilience testing

4. Managing of ICT third-party risk

5. Information-sharing arrangements

DORA’s objective is to address the ICT risks that threaten the operational
resilience, performance, and stability of the EU financial system. Similar to the
General Data Protection Regulation (GDPR), this regulation may influence other
jurisdictions to expand their cyberprotection laws for the financial sector. DORA
is set to take effect January 2025. Other regulations worth monitoring include
the expansion of the Network and Information Security directive (NIS2) and the
proposed Cyber Resilience Act.

Next, the requirements for reporting and handling extortion demands (often
from ransomware or DDoS attacks) continue to evolve. The 2022 Cyber Incident
Reporting for Critical Infrastructure Act empowers the Cybersecurity and
Infrastructure Security Agency to develop reporting requirements. The New York
State Department of Financial Services has proposed changing the reporting
window from 72 hours to 24 hours. Florida joined North Carolina to become
the second U.S. state to prohibit state and local government agencies from
complying with or paying ransomware demands, and there are a number of
states looking to enact similar laws. Ensuring compliance with these regulations
and contractual agreements is crucial and should be incorporated into your crisis
management plan.

242023 |

25Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

Last, there is the upcoming PCI DSS v4.0 requirement concerning scripts. By
March 31, 2025, organizations must manage all payment page scripts that are
loaded and executed in the consumers’ browsers. Additionally, new requirements
involve not hard-coding passwords/passphrases into files or scripts for any
application and system accounts that can be used for interactive login. Given the
dynamic nature of JavaScript environments and the prevalence of third-party
scripts, it is vital to understand your script environment and implement security
controls that provide inventory, validation, and security for scripts. Maintaining
visibility to detect and mitigate attacks is essential.

For more information on the trends in the financial service industry in the Asia-
Pacific and Japan (APJ) and Europe, Middle East, and Africa (EMEA) regions,
please refer to the following snapshots of those regions.

Financial services: APJ snapshot

The APJ snapshot is a companion piece to our larger financial services SOTI
report, The High Stakes of Innovation: Attack Trends in Financial Services
(available in English only). Please refer to that report for detailed descriptions
of how adversaries leverage the attack vectors we describe below,
recommendations to safeguard your organization, and an explanation of our
research methodologies.

Cybercriminals bank on web application and API attacks

Consistent with results from our previous financial services SOTI report, the
financial services industry remains the most targeted web attack vertical in
the Asia-Pacific and Japan (APJ) region, experiencing nearly 50% of all web
application and API attacks during the 18 months from January 2022 through
June 2023 (APJ Figure 1). This equates to 3.7 billion of the total 7.4 billion web
attacks across all verticals in APJ and is a 36% increase year over year when
comparing Q2 2022 with Q2 2023.

26

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

Globally, Australia is the most targeted area for web application and API attacks
in the financial services vertical at 36.6%, edging out the United States which
accounts for 34.4% of attacks. In APJ specifically, Australia, Singapore, and
Japan are the top three target areas — together accounting for more than
three-quarters of these types of attacks.

A deeper examination of web application and API attacks against financial
institutions reveals that the banking sub-vertical accounts for the bulk (92.3%) of
these attacks, with the insurance industry making up 1.7% of attacks, and other
financial services companies (such as fintech, capital markets, property and
casualty insurance, and payment and lending) accounting for 6.0% of attacks.

APJ: Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

APJ Fig. 1: Financial services remains the most frequently attacked vertical in APJ

2 B

3 B

4 B

1 B

0 B

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

Commerce

Financia
l S

ervi
ce

s

Socia
l M

edia

High Tech
nology

Manufactu
rin

g

Other D
igita

l M
edia

Video M
edia

Public
 Secto

r

Gaming

Busin
ess

 Servi
ce

s
Other

49.90%

19.99%

8.30% 7.61% 7.17%

2.07% 1.68% 1.62% 0.70% 0.34% 0.62%

APJ Fig. 1: Financial services remains the most frequently attacked vertical in APJ

APJ: Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

262023 |Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5

27

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

LFI remains the dominant attack vector

APJ financial services mirrors the trend we reported in 2022 and the current
global financial services trend in terms of attack vectors, with Local File Inclusion
(LFI) being the most popular, accounting for 63.21% of attacks, with Cross-Site
Scripting (XSS) second at 21.34% (APJ Figure 2).

Over the years, LFI enables attackers to launch a directory traversal (also known
as path traversal) attack, and subsequently gain access to sensitive information
to further the attack. In some cases, adversaries use LFI for a variety of nefarious
purposes: to expose files or disclose information on the web servers via tricking
the web application that its input is valid, perform remote code execution, or gain
a foothold in the enterprise network.

Third-party scripts – risk and reward

With online banking gaining traction, financial services firms are using third-party
scripts to quickly add new offerings and functionality to improve the overall
user experience. But because these scripts are out of their control, the financial
services firms have little visibility into the development and testing of the code
and potential vulnerabilities. This lack of visibility could allow attackers to
intercept user sessions, insert hostile content, steal data, or take over the
user’s browser via malicious scripts. Additionally, third-party scripts may
use code from other third parties, which may create more blind spots and
pathways for attacks.

APJ Fig. 2: LFI remains the preferred attack vector against financial services
in APJ, but other vectors like XSS, PHPi, and SQLi also pose risks

APJ: Top Web App and API Attack Vectors: Financial Services
January 1, 2022 — June 30, 2023

2 B

3 B

1 B

0 B
OtherJSISQLiPHPiXSSLFI

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

63.21%

21.34%

6.09%6.32%
1.79% 1.25%

APJ Fig. 2: LFI remains the preferred attack vector against financial services in APJ,
but other vectors like XSS, PHPi, and SQLi also pose risks

APJ: Top Web App and API Attack Vectors: Financial Services
January 1, 2022 — June 30, 2023

272023 |

28Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

Our data shows that 40% of the scripts used by financial services organizations
in APJ come from third parties, which is basically at parity with other verticals
that employ third-party vendors for 42% of their scripts (APJ Figure 3). Third-
party scripts are not necessarily malicious or less trustworthy in nature, but
they can introduce new security risks. Additionally, their usage may increase
the challenges in meeting the requirements of the Payment Card Industry
Data Security Standard (PCI DSS) v4.0 regarding script management.

Malicious bots are a weapon of choice in APJ

As a region, APJ is a close second to North America in malicious bot requests
that impact the financial services industry (APJ Figure 4). Malicious bots are
being utilized by attackers to commit crimes such as fraud and identity theft.
Use cases include web scraping to recreate the websites of financial services
brands for phishing scams, and credential stuffing via automated combinations
of usernames and passwords for account takeovers. Stolen information like
account details and other personally identifiable information can be sold on
the dark web or used in other attacks.

APJ: First-Party vs. Third-Party Scripts

APJ Fig. 3: Financial services firms are generally at parity
with other verticals in terms of usage of third-party scripts

50%

75%

100%

25%

0%
Financial Services Other Verticals

First-Party Third-Party

APJ Fig. 3: Financial services firms are generally at parity with
other verticals in terms of usage of third-party scripts

APJ: First-Party vs. Third-Party Scripts
January 1, 2022 — June 30, 2023

As a region, APJ is a

close second to North

America in malicious

bot requests that

impact the fi nancial

services industry.

29Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

Continuing what we saw in our prior financial services report and consistent
with the current global financial services trend, malicious bot traffic in APJ
increased 128% year over year when comparing Q2 2022 with Q2 2023, with
a spike in Q4 2022 that continued through Q1 2023 (APJ Figure 5). During
the 18-month period from Q1 2022 through Q2 2023, 13% of all malicious
bot requests in the region were aimed at financial services. The Philippines
was the top target area for malicious bot requests at 40.5%, followed by
China at 25.6%, and Australia at 10.2%.

APJ Fig. 4: APJ is the second-most targeted region for
malicious bot requests against financial services

Malicious Bot Requests by Region: Financial Services
January 1, 2022 — June 30, 2023

400 B

500 B

200 B

300 B

100 B

0 B

M
al

ic
io

us
 R

eq
ue

st
 C

ou
nt

 (B
ill

io
ns

)

EMEA

N. A
meric

a
APJ

LATAM

42.61%

39.70%

11.13%

6.56%

APJ Fig. 4: APJ is the second-most targeted region for
malicious bot requests against financial services

Malicious Bot Requests by Region: Financial Services
January 1, 2022 — June 30, 2023

APJ: Quarterly Bot Requests: Financial Services
January 1, 2022 — June 30, 2023

APJ Fig. 5: Malicious bot requests rose year over year with a surge in the second half of 2022

90 B

120 B

30 B

60 B

0 B

Re
qu

es
t C

ou
nt

 (B
ill

io
ns

)

Benign Bot Malicious Bot

Q2
2023

Q1
2023

Q4
2022

Q3
2022

Q2
2022

Q1
2022

APJ Fig. 5: Malicious bot requests rose year over year
with a surge in the second half of 2022

APJ: Quarterly Bot Requests: Financial Services

292023 |

30

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5 2023 |

APJ snapshot conclusion

Financial services is one of the industries most targeted by cybercriminals,
but also one of the most heavily regulated, making it essential to align your
security strategy with emerging laws, regulations, and best practices designed
to enable digital innovation and resilience. On top of existing sectoral regulations,
the financial services industry is increasingly being categorized as a critical
infrastructure (as seen in jurisdictions such as Australia, India, and Singapore),
which adds additional regulatory oversight and reporting obligations.

Legislative reform is also being pursued across many jurisdictions to keep
cybersecurity legislation up-to-date with the threat landscape. For example, India
is in the process of drafting the Digital India Bill, which will be a major overhaul of
the IT Act (first passed in 2000), to better address the modern digital landscape.
This effort started with the passing of the Digital Personal Data Protection Act
in August 2023. In Australia, the government has continuously flagged that the
existing legislation is inadequate to address the modern threat landscape and
is mulling over new legislation to address this, either with the introduction of
a new cybersecurity act or an expansion of the existing Security of Critical
Infrastructure Act. Additionally, the upcoming PCI DSS v4.0 requires that by
March 31, 2025, organizations must meet new script management requirements.

As regulators put initiatives and policies in place to strengthen cybersecurity
standards, it is important to understand the reporting requirements in your
area so that you can include them in your playbook/crisis management plans
and be aware of the opportunities you have to mitigate risk by leveraging a
multilayered defense.

For more information, please refer to the global financial services SOTI report,
The High Stakes of Innovation: Attack Trends in Financial Services.

302023 |Attack Trends in Financial Services: APJ Snapshot | Volume 9, Issue 5

The fi nancial services

industry is increasingly

being categorized as

a critical infrastructure,

which adds additional

regulatory oversight

and reporting

obligations.

31

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

Financial services: EMEA snapshot

The EMEA snapshot is a companion piece to our larger financial services
SOTI report, The High Stakes of Innovation: Attack Trends in Financial Services
(available in English only). Please refer to that report for detailed descriptions
of how adversaries leverage the attack vectors we describe below,
recommendations to safeguard your organization, and an explanation of
our research methodologies.

Web application and API attacks against fi nancial services increase

Following the global trend, the financial services industry remains the third
most attacked vertical in the Europe, Middle East, and Africa (EMEA) region,
experiencing nearly 10% of all web application and API attacks during the 18
months from January 2022 through June 2023 (EMEA Figure 1). This equates to
one billion of the total 11 billion web attacks across all verticals in EMEA and is a
significant 119% increase year over year when comparing Q2 2022 with Q2 2023.

A deeper examination of web application and API attacks on the financial
services vertical in EMEA reveals that the United Kingdom had the most web
application attacks (consistent with last year’s report) at 59.2% — and the
greatest year-over-year growth when comparing Q2 2022 with Q2 2023 (79%)
— followed by the Netherlands at 16.2% of attacks and Germany at 10.7%.

EMEA: Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

EMEA Fig. 1: Financial services is the third-most frequently attacked vertical in EMEA

2 B

4 B

6 B

1 B

0 B

At
ta

ck
 C

ou
nt

 (B
ill

io
ns

)

Video M
edia

Commerce

Financia
l S

ervi
ce

s

Other D
igita

l M
edia

Gamblin
g

Manufactu
rin

g

High Tech
nology

Gaming

Public
 Secto

r

Busin
ess

 Servi
ce

s
Other

49.35%

12.82%
9.61% 9.17%

7.12% 5.88%
1.99% 1.69%

0.80% 0.65% 0.92%

EMEA Fig. 1: Financial services is the third-most frequently attacked vertical in EMEA

EMEA: Top Web App and API Attack Verticals
January 1, 2022 — June 30, 2023

312023 |

32

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

Top attack vectors and sub-verticals

As in the prior financial services SOTI report, and reflecting the current global
financial services trend, Local File Inclusion (LFI) is the top attack vector in EMEA
for all verticals including financial services (60.26% of web attacks; EMEA Figure
2). Cross-Site Scripting (XSS) is second at 19.66% of web attacks, and SQL
injection (SQLi) is third at 13.83%.

These attack vector rankings are also consistent across the EMEA financial
services sub-verticals, which include insurance (accounting for 54.5% of all
web attacks), banking (34.0%), and other financial services companies such
as fintech, capital markets, property and casualty insurance, and payment
and lending (11.5%). It is worth noting that when comparing Q2 2022 to Q2
2023, the insurance sub-vertical experienced a 68% increase in web application
and API attacks. In contrast to banks and other financial services companies,
which hold mainly financial data, insurers also collect, process, and store
substantial amounts of personally identifiable information, which makes the
insurance sub-vertical an especially attractive target. These companies also
have rich connections with various financial institutions through investments,
debt issuance, and capital raising. Finally, the geopolitical climateis likely
also contributing to these risks as nation-state threat actors will increasingly
dedicate resources to cyber research and development, for example, to find
and exploit zero-day vulnerabilities.

EMEA Fig. 2: LFI is driving a surge in web attacks in the financial services
vertical and sub-verticals in EMEA, but other vectors, like XSS and SQLi, also pose risks

EMEA: Top Web App and API Attack Vectors: Financial Services Sub-Verticals
January 1, 2022 — June 30, 2023

600 M

800 M

400 M

200 M

0 B
OtherJSIPHPiSQLiXSSLFI

At
ta

ck
 C

ou
nt

 (M
ill

io
ns

)

60.26%

19.68%

3.02%

13.83%

1.57% 1.64%

Banking Insurance Other Financial Services

EMEA Fig. 2: LFI is driving a surge in web attacks in the financial services vertical and
sub-verticals in EMEA, but other vectors, like XSS and SQLi, also pose risks

EMEA: Top Web App and API Attack Vectors: Financial Services Sub-Verticals
January 1, 2022 — June 30, 2023

The insurance

sub-vertical

experienced a 68%

year-over-year

increase in web

application and

API attacks.

33Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

Third-party scripts – risk and reward

With online banking gaining traction, financial services firms are using third-party
scripts to quickly add new offerings and functionality to improve the overall user
experience. But because these scripts are out of their control, the financial
services firms have little visibility into the development and testing of the code
and potential vulnerabilities. Additionally, third-party scripts may use code from
other third parties, which may create more blind spots and pathways for attacks.

Our data shows that 24% of the scripts used by financial services organizations
in EMEA come from third parties, which is notably lower than in other verticals
(36%; EMEA Figure 3). Third-party scripts are not necessarily malicious or less
trustworthy, but they can introduce new security risks. Additionally, their usage
may increase the challenges in meeting the requirements of the Payment Card
Industry Data Security Standard (PCI DSS) v4.0 regarding script management.
Less reliance on third-party scripts helps ease the compliance burden for
financial institutions.

EMEA: First-Party vs. Third-Party Scripts

APJ Fig. 3: Financial services firms are generally at parity
with other verticals in terms of usage of third-party scripts

50%

75%

100%

25%

0%
Financial Services Other Verticals

First-Party Third-Party

EMEA Fig. 3: Financial services firms use fewer third-party scripts than other verticals

EMEA: First-Party vs. Third-Party Scripts
January 1, 2022 — June 30, 2023

332023 |Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5

34Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

EMEA in the crosshairs of the regional shift in DDoS attacks

As discussed in the global report, financial institutions are bearing the brunt
of the resurgence of Distributed Denial-of-Service (DDoS) attacks. This is
particularly true in EMEA. As a region, EMEA experienced the most DDoS attack
events (63.52%), nearly double the amount in the next top region, North America
(32.58%; EMEA Figure 4). We started seeing this regional shift in our report last
year which revealed the volume of DDoS attacks against the United States had
lessened, while attack volume against EMEA increased and surpassed North
America, despite the lower overall number of targets.

EMEA Fig. 4: EMEA is the top region for DDoS attack events against
financial services, nearly double the amount in the next top region

DDoS Attack Events by Regions: Financial Services
January 1, 2022 — June 30, 2023

1000

1500

500

0

At
ta

ck
 E

ve
nt

 C
ou

nt

EMEA

N. A
meric

a
APJ

LATAM

63.52%

32.58%

2.17% 1.73%

EMEA Fig. 4: EMEA is the top region for DDoS attack events against
financial services, nearly double the amount in the next top region

DDoS Attack Events by Regions: Financial Services
January 1, 2022 — June 30, 2023

35

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

During the 18 months from January 2022 through June 2023, DDoS attack
events in the financial services vertical in EMEA trended upward and the vertical
experienced 57% of all attack events in the region. This equates to 1,466 of
the 2,590 attack events across all verticals in EMEA and resulted in a 40%
increase year over year in DDoS attacks when comparing Q2 2022 with
Q2 2023 (EMEA Figure 5).

By looking more closely at the region, we can see that the United Kingdom tops
the list at 29.2% of DDoS attack events (a 154% year-over-year increase),
followed by Germany at 15.1%.

We surmise that the attacks on the European banks that are targeting allies of
Ukraine are financially and politically motivated by Russia’s continued war in
Ukraine and are the primary reason for the increase in attack events in EMEA.
For example, Pro-Russian hacktivist groups announced in early June that they
would carry out “massive” coordinated DDoS attacks on both European and
U.S. financial organizations. Killnet, REvil, and Anonymous Sudan were among
the adversaries mentioned.

EMEA: Quarterly DDoS Attack Events: Financial Services
January 1, 2022 — June 30, 2023

200

300

100

0
Q2

2023
Q1

2023
Q4

2022
Q3

2022
Q2

2022
Q1

2022

At
ta

ck
 E

ve
nt

 C
ou

nt

EMEA Fig. 5: DDoS attack events against financial services trended upwardEMEA Fig. 5: DDoS attack events against financial services trended upward

EMEA: Quarterly DDoS Attack Events: Financial Services
January 1, 2022 — June 30, 2023

352023 |Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5

EMEA is the top

region for DDoS

attack events against

fi nancial services.

36

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

Attack Trends in Financial Services: EMEA Snapshot | Volume 9, Issue 5 2023 |

The regional shift in DDoS attack events against financial services shows how
quickly adversaries can switch their focus. However, within this context it is also
important to look at the impact on other verticals in the region. Although threat
actors publicly state they are focused on financial organizations, further analysis
reveals that DDoS attack events against the gambling, commerce, and
manufacturing verticals in EMEA each also exceed all other regions combined
(EMEA Figure 6).

EMEA snapshot conclusion

Financial services is one of the industries most targeted by cybercriminals, but
also one of the most heavily regulated, making it essential to align your security
strategy with emerging laws and regulations designed to enable digital
innovation and resilience. As of January 17, 2025, the EU financial sectors should
be prepared to comply with the Digital Operational Resilience Act (DORA). DORA
sets uniform requirements for the security of network and information systems
of companies and organizations operating in the financial sector, as well as
critical third parties that provide information and communication technology–
related services to them, such as cloud platforms or data analytics services.
This legislation comes on the heels of the new Network and Information
Systems Directive (NIS2), which will go into effect on October 17, 2024. Outside
the EU, countries such as Saudi Arabia have introduced data protection laws
similar to the EU’s General Data Protection Regulation (GDPR), which create
obligations for financial entities dealing with personal data. Additionally, the
upcoming PCI DSS v4.0 requires that by March 31, 2025, organizations meet
new script management requirements.

EMEA Fig. 6: EMEA experienced more DDoS attack events
in four verticals than all other regions combined

EMEA: Top 5 DDoS Attack Event Verticals
January 1, 2022 — June 30, 2023

At
ta

ck
 E

ve
nt

 C
ou

nt

0%

500

1000

2000

1500

High TechnologyManufacturingCommerceGamblingFinancial
Services

EMEA Other Regions

EMEA Fig. 6: EMEA experienced more DDoS attack events
in four verticals than all other regions combined

EMEA: Top 5 DDoS Attack Event Verticals
January 1, 2022 — June 30, 2023

362023 |

37The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

As regulators put initiatives and policies in place to strengthen cybersecurity
standards, it is important to understand the reporting requirements in your
area so that you can include them in your playbook/crisis management plans
and be aware of the opportunities you have to mitigate risk by leveraging a
multilayered defense.

For more information, please refer to the global financial services SOTI report,
The High Stakes of Innovation: Attack Trends in Financial Services.

Conclusion: Fortifying your defenses
with actionable insights

Financial services will always be one of the most targeted industries. While
remaining third for web application and API attacks and first for phishing, this
year the financial services industry ranked first for DDoS attacks as well. This
industry has been heavily targeted by old and new security threats that continue
to challenge how your organization can effectively defend its growing attack
surface. Although we saw an increase in the scope of attacks and in innovation
in techniques this year, we also continue to see companies successfully
protecting their customers.

While the industry continues to innovate and provide more API-based customer
access, you must focus on ensuring that you have visibility and automated
mitigations in place. With shadow API and access control bypass attacks on
the rise, you must rapidly detect rogue APIs (both customer-facing and internal),
monitor them for attacks or abuse, establish processes to investigate incidents,
and automate mitigation policies.

These same recommendations for visibility and response apply to issues such
as account takeover, financial aggregators, web scraping, and phishing. These
edge-facing issues are great areas in which to leverage OWASP Top 10 and
MITRE ATT&CK framework to develop training programs, maturity baseline
measurements, and test plans for your red team/pen test group. You can even
use the ATT&CK Navigator tool to organize a purple team based on a specific
threat. (Purple teams perform simulation attacks to find security weaknesses
in an organization’s perimeter with the goal of enhancing its security.)

372023 |

38

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Another area in which we see increased attention from both cybercriminals
and regulators is the scripts environment. Although this area has not been
as high on our risk registrars in the past, you should act early to get the right
controls in place to prevent a crisis in meeting the recently released PCI DSS
v4.0. You should also partner closely with your legal department to update
policies that address the emerging regulations on areas like resiliency.

As DDoS continues to be a major threat vector, you must ensure that you have
up-to-date plans for Layer 3/4 and Layer 7 attacks. Validate your play books and
track the attack trends for both size and speed to evaluate your risk based on
current capabilities. Another good practice is to determine a trigger to conduct
a technical exercise. (Typically, if you have not had an attack in the last three
quarters, you should conduct a live exercise).

It is important to detect and quickly respond to web scrapers that harvest
information about customers or websites with the goal of setting up phishing
sites. There are a number of tools and services to accomplish this and it is
important to collaborate with your fraud prevention team when developing
your solution.

This report is based on both the threat traffic we defend against and best
practices we’ve learned from our customers. We hope these insights allow
you to have conversations with partners about ROI and risk, and the data
provides you with effective tactical approaches to defend your company
and customers from threats.

Stay plugged into our latest research by checking out our security research hub.

382023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

39The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Methodology

Web application and bot attacks

This data describes application-layer alerts on traffic seen through our web
application firewall (WAF) and bot management tool. The web application
attack alerts are triggered when we detect a malicious payload within a request
to a protected website or application. The bot alerts are triggered when we
detect a bot payload within a request to a protected website or application.
These bot alerts can be triggered by both malicious and benign bots. The alerts
do not indicate the successfulness of an attack. Although these products allow
a high level of customization, we collected the data presented here in a manner
that does not consider custom configurations of the protected properties.

The data was drawn from an internal tool for analysis of security events
detected on Akamai Connected Cloud, a network of approximately 340,000
servers in more than 4,000 locations on nearly 1,300 networks in 130+
countries. Our security teams use this data, measured in petabytes per month,
to research attacks, flag malicious behavior, and feed additional intelligence
 into Akamai’s solutions.

This data covered the 18-month period from January 1, 2022, through June 30,
2023. One significant attack in May 2022 was omitted from some web
application attack visualizations because of its tremendous volume. It
remained in the dataset for all analytic purposes.

Client-Side Protection & Compliance data

This data describes scripts observed and analyzed within the Akamai Client-Side
Protection & Compliance tool. Client-Side Protection & Compliance (formerly
Page Integrity Manager) runs within the browser, and observes any scripts
executed within the browser across protected web pages. The tool observes
more than 18 billion scripts and protects nearly 10 billion web pages on a
daily basis. Our security team uses this data to research script vulnerabilities,
detect malicious behavior, and feed intelligence into other
Akamai security solutions.

The Client-Side Protection & Compliance data we analyzed for this report
was a 90-day sample of data gathered between Q2 and Q3 2023.

392023 |

40

true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteCha
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg,
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.Par
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.Esc
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIV
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Co
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respCh
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w ht
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.Af
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlC
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fp
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseW

The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

DDoS

Akamai Prolexic Routed defends organizations against DDoS attacks by
redirecting network traffic through Akamai scrubbing centers, only allowing
the clean traffic forward. Experts in the Akamai Security Operations Command
Center (SOCC) tailor proactive mitigation controls to detect and stop attacks
instantly, and conduct live analysis of the remaining traffic to determine further
mitigation as needed.

DDoS attack events are detected either by the SOCC or the targeted
organization itself, depending on the chosen deployment model — always-on
or on demand — but the SOCC records data for all attacks mitigated. Similar
to web application traffic, the source is determined by the source of the IP
traffic prior to Akamai’s network.

This data covered the 18-month period from January 1, 2022, through
June 30, 2023.

Client Reputation

Akamai Client Reputation is the part of Akamai App & API Protector that
calculates a risk score on a scale of 0 to 10 for every IP in the Akamai network.
A risk score of 1 forecasts a low likelihood of future attacks by that client; a risk
score of 10 forecasts a high likelihood that the IP address may be used by a
malicious actor.

While compiling the scores, Client Reputation leverages all Akamai feeds and
data. This includes attack traffic, WAF triggers, rate control, and bot detections,
as well as normal (benign) traffic. Client Reputation can assign a score to an IP
in the context of an individual customer, which is visible only to that specific
customer, not to others. Client Reputation can also assign scores to a whole
segment of customers or to an entire industry (for example, the financial services
segment). In this case, the score is visible to that whole segment of customers,
but not to other segments.

The data in this report was generated by Client Reputation data, spans May 1,
2023, through July 31, 2023, and was filtered so it only includes scores assigned
to IPs in the context of either:

• A financial services customer

• The whole financial services segment

With this approach, we can obtain a clear and accurate picture of the attack
landscape on financial services customers.

402023 |

41The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5 2023 |

Akamai powers and protects life online. Leading companies worldwide choose Akamai to build, deliver, and secure their digital
experiences — helping billions of people live, work, and play every day. Akamai Connected Cloud, a massively distributed edge and cloud
platform, puts apps and experiences closer to users and keeps threats farther away. Learn more about Akamai’s cloud computing,
security, and content delivery solutions at akamai.com and akamai.com/blog, or follow Akamai Technologies on Twitter and LinkedIn.
Published 9/23.

Credits

Editorial and writing

Yossi Barkshtein Charlotte Pelliccia
Cheryl Chiodi Lance Rhodes
Chen Doytshman Badette Tribbey
Ryan Gao Steve Winterfeld
Karan Mankodi

Review and subject matter contribution

Tom Emmons Gal Meiri
Or Katz Richard Meeus
Reuben Koh Matthew Payne
Emily Lyons Maxim Zavodchik

Data analysis

Chelsea Tuttle

Marketing and publishing

Georgina Morales Hampe
Shivangi Sahu
Emily Spinks

More State of the
Internet/Security
Read back issues and watch for upcoming
releases of Akamai’s acclaimed State of the
Internet/Security reports. akamai.com/soti

More Akamai
threat research
Stay updated with the latest threat intelligence
analyses, security reports, and cybersecurity
research. akamai.com/security-research

Access data from
this report
View high-quality versions of the graphs and
charts referenced in this report. These images
are free to use and reference, provided Akamai is
duly credited as a source and the Akamai logo is
retained. akamai.com/sotidata

More on Akamai solutions
To learn more information on Akamai solutions
against threats targeting fi nancial services, visit
our fi nancial services CDN page.

412023 |The High Stakes of Innovation: Attack Trends in Financial Services | Volume 9, Issue 5

